Spaces:
Runtime error
Runtime error
import streamlit as st | |
import pandas as pd | |
import numpy as np | |
import plotly.express as px | |
from sklearn.linear_model import LinearRegression | |
from datetime import datetime, timedelta | |
import streamlit as st | |
from crewai import Agent, Task, Crew | |
import os | |
import random | |
# Set up your OpenAI API key (ensure you handle your API keys securely in production) | |
os.environ["OPENAI_API_KEY"] = "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" | |
# Define your agents and tasks as per your setup | |
# Environmental Analyst Agent | |
environmental_agent = Agent( | |
role="Environmental Analyst", | |
goal="Analyze and propose environmentally sustainable designs.", | |
backstory="An experienced environmentalist with a strong track record in developing sustainable urban plans that reduce environmental impact and promote eco-friendly living.", | |
tool=["EcoImpactAnalysisTool", "RenewableEnergySimulator"] | |
) | |
# Human Traffic Carbon Footprint Analyst Agent | |
human_traffic_carbon_footprint_agent = Agent( | |
role="Human Traffic Carbon Footprint Analyst", | |
goal="Assess and mitigate the carbon footprint resulting from human traffic around buildings.", | |
backstory="Dedicated to reducing urban carbon emissions, with expertise in traffic pattern analysis and sustainable transportation solutions.", | |
tool=[ | |
"TrafficSimulationTool", | |
"CarbonEmissionCalculator", | |
"SustainableTransportPlanner" | |
] | |
) | |
# Define tasks for each agent | |
assess_sustainability_task = Task( | |
description="Assess environmental sustainability of urban design.", | |
agent=environmental_agent | |
) | |
mitigate_traffic_carbon_footprint_task = Task( | |
description="Mitigate carbon footprint from human traffic.", | |
agent=human_traffic_carbon_footprint_agent | |
) | |
# Streamlit app interface | |
st.title('Smart City Sustainability Analysis') | |
# Predefined surprising city design concepts | |
design_concepts = [ | |
"A city where all buildings are floating on water to adapt to rising sea levels.", | |
"An underground city designed to use geothermal energy and protect inhabitants from extreme weather conditions.", | |
"A vertical city with skyscrapers connected by sky bridges and public transportation via drones.", | |
"A city built within a gigantic biodome that regulates climate and ensures a perfect environment.", | |
"A fully mobile city with buildings on wheels, allowing it to move to different areas as seasons change." | |
] | |
def generate_city_design(): | |
# Randomly choose a surprising design concept | |
return random.choice(design_concepts) | |
# User inputs for the analysis | |
design_input = st.text_area("Enter your urban design concept:") | |
if st.button('Analyze Design'): | |
if design_input: | |
# Assemble the crew with the defined tasks | |
sustainability_crew = Crew( | |
agents=[environmental_agent, human_traffic_carbon_footprint_agent], | |
tasks=[assess_sustainability_task, mitigate_traffic_carbon_footprint_task], | |
verbose=True | |
) | |
# Run the crew to analyze the design | |
result = sustainability_crew.kickoff() | |
# Display the analysis results (this is a placeholder, adjust based on your actual result structure) | |
st.subheader('Analysis Results') | |
st.write(result) # Make sure to format the result in a user-friendly way | |
else: | |
st.write("Please enter a design concept to analyze.") | |
# Define the Sensor class | |
class Sensor: | |
def __init__(self, location): | |
self.location = location | |
self.carbon_levels = [] | |
def detect_carbon(self, carbon_emission): | |
self.carbon_levels.append(carbon_emission) | |
def get_average_carbon(self): | |
return sum(self.carbon_levels) / len(self.carbon_levels) if self.carbon_levels else 0 | |
# Define the AIAgent class | |
class AIAgent: | |
def analyze_data(self, sensor): | |
average_carbon = sensor.get_average_carbon() | |
return average_carbon, self.make_decision(average_carbon) | |
def make_decision(self, average_carbon): | |
if average_carbon > 50: | |
return "Implement carbon reduction measures." | |
else: | |
return "Maintain current city operations." | |
# Define the SmartCity class | |
class SmartCity: | |
def __init__(self, sensors, agent): | |
self.sensors = sensors | |
self.agent = agent | |
def simulate_human_traffic(self): | |
for sensor in self.sensors: | |
carbon_emission = random.uniform(10, 100) | |
sensor.detect_carbon(carbon_emission) | |
def run_simulation(self): | |
self.simulate_human_traffic() | |
results = {} | |
for sensor in self.sensors: | |
avg_carbon, decision = self.agent.analyze_data(sensor) | |
results[sensor.location] = (avg_carbon, decision) | |
return results | |
# Streamlit app starts here | |
st.title('Smart City Carbon Emission Simulation') | |
# Number of sensors input | |
number_of_sensors = st.sidebar.number_input('Number of Sensors', min_value=1, value=3) | |
# Create sensors and an AI agent | |
sensors = [Sensor(location=f"Location {i+1}") for i in range(number_of_sensors)] | |
agent = AIAgent() | |
# Initialize the Smart City | |
smart_city = SmartCity(sensors, agent) | |
if st.button('Run Daily Simulation'): | |
results = smart_city.run_simulation() | |
for location, (avg_carbon, decision) in results.items(): | |
st.write(f"**{location}** - Average Carbon Emission: {avg_carbon:.2f}") | |
st.write(f"Decision: {decision}") | |
else: | |
st.write("Click the button to run the simulation for a day.") | |
def get_sensor_data(traffic_density): | |
# This function should be replaced with real sensor data acquisition logic | |
return {'traffic_density': traffic_density} | |
# Placeholder function to simulate analyzing sensor data | |
def analyze_sensor_data(data): | |
# This function should be replaced with real data analysis logic | |
return {'groundedness': 0.9, 'hallucination': 0.1} | |
# Placeholder function to simulate running simulations | |
def run_simulation(parameters): | |
# This function should be replaced with real simulation logic | |
return {'simulation_result': 'Reduced traffic congestion by 30%'} | |
# Placeholder function to simulate creating eBooks | |
def create_ebook(ideas): | |
# This function should be replaced with real eBook creation logic | |
return 'eBook with innovative urban planning ideas generated.' | |
# Streamlit application | |
st.title('Smart City Design Tool') | |
# Sensor data simulation inputs | |
st.header('Sensor Data Input') | |
traffic_density = st.slider('Select Traffic Density', min_value=0, max_value=100, value=50) | |
# When the user clicks the 'Analyze Data' button, run the analysis and display the results | |
if st.button('Analyze Data'): | |
# Simulate getting sensor data based on inputs | |
sensor_data = get_sensor_data(traffic_density) | |
# Execute the crew to analyze the design and generate solutions | |
analysis_results = analyze_sensor_data(sensor_data) | |
hin = analysis_results['groundedness'] * analysis_results['hallucination'] | |
simulation_parameters = {'traffic_density': sensor_data['traffic_density']} | |
simulation_result = run_simulation(simulation_parameters) | |
new_ideas = ['Urban Green Spaces', 'Renewable Energy Sources'] | |
ebook = create_ebook(new_ideas) | |
# Display the results | |
st.write(f"HIN: {hin}") | |
st.write(f"Simulation Result: {simulation_result['simulation_result']}") | |
st.write(f"eBook Content: {ebook}") | |
# Simulate sensor data | |
def simulate_sensor_data(sensor_type, num_entries=100): | |
timestamps = [datetime.now() - timedelta(minutes=15 * i) for i in range(num_entries)] | |
if sensor_type == "temperature": | |
data = np.random.normal(loc=25, scale=5, size=num_entries) # Average temp with some variation | |
elif sensor_type == "humidity": | |
data = np.random.uniform(low=30, high=70, size=num_entries) # Random humidity levels | |
elif sensor_type == "energy": | |
data = np.random.uniform(low=100, high=500, size=num_entries) # Energy usage in kWh | |
elif sensor_type == "water": | |
data = np.random.uniform(low=100, high=1000, size=num_entries) # Water usage in gallons | |
else: | |
data = np.random.rand(num_entries) # Generic data for other sensors | |
return pd.DataFrame({"Timestamp": timestamps, "Value": data}) | |
# AI analysis (simple linear regression for demonstration) | |
def ai_analysis(df): | |
df["Timestamp_ordinal"] = df["Timestamp"].map(datetime.toordinal) | |
X = df[["Timestamp_ordinal"]] | |
y = df["Value"] | |
model = LinearRegression() | |
model.fit(X, y) | |
return model.predict(X) | |
# Main app function | |
def main(): | |
st.title("Custom Green City Builder") | |
# Sidebar for sensor selection | |
sensor_type = st.sidebar.selectbox("Select Sensor Type", ["temperature", "humidity", "energy", "water", "other"]) | |
# Simulate and display sensor data | |
data = simulate_sensor_data(sensor_type) | |
st.write(f"Simulated Data for {sensor_type.capitalize()} Sensor") | |
st.line_chart(data.set_index("Timestamp")) | |
# AI analysis and prediction | |
if st.button("Run AI Analysis"): | |
predictions = ai_analysis(data) | |
data["Predictions"] = predictions | |
fig = px.line(data, x="Timestamp", y=["Value", "Predictions"], labels={"value": "Sensor Readings", "variable": "Type"}) | |
st.plotly_chart(fig) | |
if __name__ == "__main__": | |
main() | |