Spaces:
Runtime error
Runtime error
Kashif-javed
commited on
Commit
•
d8d2f03
1
Parent(s):
d2f2f89
app file
Browse files
app.py
ADDED
@@ -0,0 +1,241 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
import numpy as np
|
4 |
+
import plotly.express as px
|
5 |
+
from sklearn.linear_model import LinearRegression
|
6 |
+
from datetime import datetime, timedelta
|
7 |
+
import streamlit as st
|
8 |
+
from crewai import Agent, Task, Crew
|
9 |
+
import os
|
10 |
+
import random
|
11 |
+
|
12 |
+
# Set up your OpenAI API key (ensure you handle your API keys securely in production)
|
13 |
+
os.environ["OPENAI_API_KEY"] = "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"
|
14 |
+
|
15 |
+
# Define your agents and tasks as per your setup
|
16 |
+
|
17 |
+
# Environmental Analyst Agent
|
18 |
+
environmental_agent = Agent(
|
19 |
+
role="Environmental Analyst",
|
20 |
+
goal="Analyze and propose environmentally sustainable designs.",
|
21 |
+
backstory="An experienced environmentalist with a strong track record in developing sustainable urban plans that reduce environmental impact and promote eco-friendly living.",
|
22 |
+
tool=["EcoImpactAnalysisTool", "RenewableEnergySimulator"]
|
23 |
+
)
|
24 |
+
|
25 |
+
# Human Traffic Carbon Footprint Analyst Agent
|
26 |
+
human_traffic_carbon_footprint_agent = Agent(
|
27 |
+
role="Human Traffic Carbon Footprint Analyst",
|
28 |
+
goal="Assess and mitigate the carbon footprint resulting from human traffic around buildings.",
|
29 |
+
backstory="Dedicated to reducing urban carbon emissions, with expertise in traffic pattern analysis and sustainable transportation solutions.",
|
30 |
+
tool=[
|
31 |
+
"TrafficSimulationTool",
|
32 |
+
"CarbonEmissionCalculator",
|
33 |
+
"SustainableTransportPlanner"
|
34 |
+
]
|
35 |
+
)
|
36 |
+
|
37 |
+
# Define tasks for each agent
|
38 |
+
assess_sustainability_task = Task(
|
39 |
+
description="Assess environmental sustainability of urban design.",
|
40 |
+
agent=environmental_agent
|
41 |
+
)
|
42 |
+
|
43 |
+
mitigate_traffic_carbon_footprint_task = Task(
|
44 |
+
description="Mitigate carbon footprint from human traffic.",
|
45 |
+
agent=human_traffic_carbon_footprint_agent
|
46 |
+
)
|
47 |
+
|
48 |
+
# Streamlit app interface
|
49 |
+
st.title('Smart City Sustainability Analysis')
|
50 |
+
|
51 |
+
# Predefined surprising city design concepts
|
52 |
+
design_concepts = [
|
53 |
+
"A city where all buildings are floating on water to adapt to rising sea levels.",
|
54 |
+
"An underground city designed to use geothermal energy and protect inhabitants from extreme weather conditions.",
|
55 |
+
"A vertical city with skyscrapers connected by sky bridges and public transportation via drones.",
|
56 |
+
"A city built within a gigantic biodome that regulates climate and ensures a perfect environment.",
|
57 |
+
"A fully mobile city with buildings on wheels, allowing it to move to different areas as seasons change."
|
58 |
+
]
|
59 |
+
|
60 |
+
def generate_city_design():
|
61 |
+
# Randomly choose a surprising design concept
|
62 |
+
return random.choice(design_concepts)
|
63 |
+
|
64 |
+
|
65 |
+
# User inputs for the analysis
|
66 |
+
design_input = st.text_area("Enter your urban design concept:")
|
67 |
+
|
68 |
+
if st.button('Analyze Design'):
|
69 |
+
if design_input:
|
70 |
+
# Assemble the crew with the defined tasks
|
71 |
+
sustainability_crew = Crew(
|
72 |
+
agents=[environmental_agent, human_traffic_carbon_footprint_agent],
|
73 |
+
tasks=[assess_sustainability_task, mitigate_traffic_carbon_footprint_task],
|
74 |
+
verbose=True
|
75 |
+
)
|
76 |
+
|
77 |
+
# Run the crew to analyze the design
|
78 |
+
result = sustainability_crew.kickoff()
|
79 |
+
|
80 |
+
# Display the analysis results (this is a placeholder, adjust based on your actual result structure)
|
81 |
+
st.subheader('Analysis Results')
|
82 |
+
st.write(result) # Make sure to format the result in a user-friendly way
|
83 |
+
else:
|
84 |
+
st.write("Please enter a design concept to analyze.")
|
85 |
+
|
86 |
+
# Define the Sensor class
|
87 |
+
class Sensor:
|
88 |
+
def __init__(self, location):
|
89 |
+
self.location = location
|
90 |
+
self.carbon_levels = []
|
91 |
+
|
92 |
+
def detect_carbon(self, carbon_emission):
|
93 |
+
self.carbon_levels.append(carbon_emission)
|
94 |
+
|
95 |
+
def get_average_carbon(self):
|
96 |
+
return sum(self.carbon_levels) / len(self.carbon_levels) if self.carbon_levels else 0
|
97 |
+
|
98 |
+
# Define the AIAgent class
|
99 |
+
class AIAgent:
|
100 |
+
def analyze_data(self, sensor):
|
101 |
+
average_carbon = sensor.get_average_carbon()
|
102 |
+
return average_carbon, self.make_decision(average_carbon)
|
103 |
+
|
104 |
+
def make_decision(self, average_carbon):
|
105 |
+
if average_carbon > 50:
|
106 |
+
return "Implement carbon reduction measures."
|
107 |
+
else:
|
108 |
+
return "Maintain current city operations."
|
109 |
+
|
110 |
+
# Define the SmartCity class
|
111 |
+
class SmartCity:
|
112 |
+
def __init__(self, sensors, agent):
|
113 |
+
self.sensors = sensors
|
114 |
+
self.agent = agent
|
115 |
+
|
116 |
+
def simulate_human_traffic(self):
|
117 |
+
for sensor in self.sensors:
|
118 |
+
carbon_emission = random.uniform(10, 100)
|
119 |
+
sensor.detect_carbon(carbon_emission)
|
120 |
+
|
121 |
+
def run_simulation(self):
|
122 |
+
self.simulate_human_traffic()
|
123 |
+
results = {}
|
124 |
+
for sensor in self.sensors:
|
125 |
+
avg_carbon, decision = self.agent.analyze_data(sensor)
|
126 |
+
results[sensor.location] = (avg_carbon, decision)
|
127 |
+
return results
|
128 |
+
|
129 |
+
# Streamlit app starts here
|
130 |
+
st.title('Smart City Carbon Emission Simulation')
|
131 |
+
|
132 |
+
# Number of sensors input
|
133 |
+
number_of_sensors = st.sidebar.number_input('Number of Sensors', min_value=1, value=3)
|
134 |
+
|
135 |
+
# Create sensors and an AI agent
|
136 |
+
sensors = [Sensor(location=f"Location {i+1}") for i in range(number_of_sensors)]
|
137 |
+
agent = AIAgent()
|
138 |
+
|
139 |
+
# Initialize the Smart City
|
140 |
+
smart_city = SmartCity(sensors, agent)
|
141 |
+
|
142 |
+
if st.button('Run Daily Simulation'):
|
143 |
+
results = smart_city.run_simulation()
|
144 |
+
for location, (avg_carbon, decision) in results.items():
|
145 |
+
st.write(f"**{location}** - Average Carbon Emission: {avg_carbon:.2f}")
|
146 |
+
st.write(f"Decision: {decision}")
|
147 |
+
else:
|
148 |
+
st.write("Click the button to run the simulation for a day.")
|
149 |
+
|
150 |
+
def get_sensor_data(traffic_density):
|
151 |
+
# This function should be replaced with real sensor data acquisition logic
|
152 |
+
return {'traffic_density': traffic_density}
|
153 |
+
|
154 |
+
# Placeholder function to simulate analyzing sensor data
|
155 |
+
def analyze_sensor_data(data):
|
156 |
+
# This function should be replaced with real data analysis logic
|
157 |
+
return {'groundedness': 0.9, 'hallucination': 0.1}
|
158 |
+
|
159 |
+
# Placeholder function to simulate running simulations
|
160 |
+
def run_simulation(parameters):
|
161 |
+
# This function should be replaced with real simulation logic
|
162 |
+
return {'simulation_result': 'Reduced traffic congestion by 30%'}
|
163 |
+
|
164 |
+
# Placeholder function to simulate creating eBooks
|
165 |
+
def create_ebook(ideas):
|
166 |
+
# This function should be replaced with real eBook creation logic
|
167 |
+
return 'eBook with innovative urban planning ideas generated.'
|
168 |
+
|
169 |
+
# Streamlit application
|
170 |
+
st.title('Smart City Design Tool')
|
171 |
+
|
172 |
+
# Sensor data simulation inputs
|
173 |
+
st.header('Sensor Data Input')
|
174 |
+
traffic_density = st.slider('Select Traffic Density', min_value=0, max_value=100, value=50)
|
175 |
+
|
176 |
+
# When the user clicks the 'Analyze Data' button, run the analysis and display the results
|
177 |
+
if st.button('Analyze Data'):
|
178 |
+
# Simulate getting sensor data based on inputs
|
179 |
+
sensor_data = get_sensor_data(traffic_density)
|
180 |
+
|
181 |
+
# Execute the crew to analyze the design and generate solutions
|
182 |
+
analysis_results = analyze_sensor_data(sensor_data)
|
183 |
+
hin = analysis_results['groundedness'] * analysis_results['hallucination']
|
184 |
+
simulation_parameters = {'traffic_density': sensor_data['traffic_density']}
|
185 |
+
simulation_result = run_simulation(simulation_parameters)
|
186 |
+
new_ideas = ['Urban Green Spaces', 'Renewable Energy Sources']
|
187 |
+
ebook = create_ebook(new_ideas)
|
188 |
+
|
189 |
+
# Display the results
|
190 |
+
st.write(f"HIN: {hin}")
|
191 |
+
st.write(f"Simulation Result: {simulation_result['simulation_result']}")
|
192 |
+
st.write(f"eBook Content: {ebook}")
|
193 |
+
|
194 |
+
|
195 |
+
|
196 |
+
# Simulate sensor data
|
197 |
+
def simulate_sensor_data(sensor_type, num_entries=100):
|
198 |
+
timestamps = [datetime.now() - timedelta(minutes=15 * i) for i in range(num_entries)]
|
199 |
+
if sensor_type == "temperature":
|
200 |
+
data = np.random.normal(loc=25, scale=5, size=num_entries) # Average temp with some variation
|
201 |
+
elif sensor_type == "humidity":
|
202 |
+
data = np.random.uniform(low=30, high=70, size=num_entries) # Random humidity levels
|
203 |
+
elif sensor_type == "energy":
|
204 |
+
data = np.random.uniform(low=100, high=500, size=num_entries) # Energy usage in kWh
|
205 |
+
elif sensor_type == "water":
|
206 |
+
data = np.random.uniform(low=100, high=1000, size=num_entries) # Water usage in gallons
|
207 |
+
else:
|
208 |
+
data = np.random.rand(num_entries) # Generic data for other sensors
|
209 |
+
|
210 |
+
return pd.DataFrame({"Timestamp": timestamps, "Value": data})
|
211 |
+
|
212 |
+
# AI analysis (simple linear regression for demonstration)
|
213 |
+
def ai_analysis(df):
|
214 |
+
df["Timestamp_ordinal"] = df["Timestamp"].map(datetime.toordinal)
|
215 |
+
X = df[["Timestamp_ordinal"]]
|
216 |
+
y = df["Value"]
|
217 |
+
model = LinearRegression()
|
218 |
+
model.fit(X, y)
|
219 |
+
return model.predict(X)
|
220 |
+
|
221 |
+
# Main app function
|
222 |
+
def main():
|
223 |
+
st.title("Custom Green City Builder")
|
224 |
+
|
225 |
+
# Sidebar for sensor selection
|
226 |
+
sensor_type = st.sidebar.selectbox("Select Sensor Type", ["temperature", "humidity", "energy", "water", "other"])
|
227 |
+
|
228 |
+
# Simulate and display sensor data
|
229 |
+
data = simulate_sensor_data(sensor_type)
|
230 |
+
st.write(f"Simulated Data for {sensor_type.capitalize()} Sensor")
|
231 |
+
st.line_chart(data.set_index("Timestamp"))
|
232 |
+
|
233 |
+
# AI analysis and prediction
|
234 |
+
if st.button("Run AI Analysis"):
|
235 |
+
predictions = ai_analysis(data)
|
236 |
+
data["Predictions"] = predictions
|
237 |
+
fig = px.line(data, x="Timestamp", y=["Value", "Predictions"], labels={"value": "Sensor Readings", "variable": "Type"})
|
238 |
+
st.plotly_chart(fig)
|
239 |
+
|
240 |
+
if __name__ == "__main__":
|
241 |
+
main()
|