Kashif-javed commited on
Commit
d8d2f03
1 Parent(s): d2f2f89
Files changed (1) hide show
  1. app.py +241 -0
app.py ADDED
@@ -0,0 +1,241 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import pandas as pd
3
+ import numpy as np
4
+ import plotly.express as px
5
+ from sklearn.linear_model import LinearRegression
6
+ from datetime import datetime, timedelta
7
+ import streamlit as st
8
+ from crewai import Agent, Task, Crew
9
+ import os
10
+ import random
11
+
12
+ # Set up your OpenAI API key (ensure you handle your API keys securely in production)
13
+ os.environ["OPENAI_API_KEY"] = "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"
14
+
15
+ # Define your agents and tasks as per your setup
16
+
17
+ # Environmental Analyst Agent
18
+ environmental_agent = Agent(
19
+ role="Environmental Analyst",
20
+ goal="Analyze and propose environmentally sustainable designs.",
21
+ backstory="An experienced environmentalist with a strong track record in developing sustainable urban plans that reduce environmental impact and promote eco-friendly living.",
22
+ tool=["EcoImpactAnalysisTool", "RenewableEnergySimulator"]
23
+ )
24
+
25
+ # Human Traffic Carbon Footprint Analyst Agent
26
+ human_traffic_carbon_footprint_agent = Agent(
27
+ role="Human Traffic Carbon Footprint Analyst",
28
+ goal="Assess and mitigate the carbon footprint resulting from human traffic around buildings.",
29
+ backstory="Dedicated to reducing urban carbon emissions, with expertise in traffic pattern analysis and sustainable transportation solutions.",
30
+ tool=[
31
+ "TrafficSimulationTool",
32
+ "CarbonEmissionCalculator",
33
+ "SustainableTransportPlanner"
34
+ ]
35
+ )
36
+
37
+ # Define tasks for each agent
38
+ assess_sustainability_task = Task(
39
+ description="Assess environmental sustainability of urban design.",
40
+ agent=environmental_agent
41
+ )
42
+
43
+ mitigate_traffic_carbon_footprint_task = Task(
44
+ description="Mitigate carbon footprint from human traffic.",
45
+ agent=human_traffic_carbon_footprint_agent
46
+ )
47
+
48
+ # Streamlit app interface
49
+ st.title('Smart City Sustainability Analysis')
50
+
51
+ # Predefined surprising city design concepts
52
+ design_concepts = [
53
+ "A city where all buildings are floating on water to adapt to rising sea levels.",
54
+ "An underground city designed to use geothermal energy and protect inhabitants from extreme weather conditions.",
55
+ "A vertical city with skyscrapers connected by sky bridges and public transportation via drones.",
56
+ "A city built within a gigantic biodome that regulates climate and ensures a perfect environment.",
57
+ "A fully mobile city with buildings on wheels, allowing it to move to different areas as seasons change."
58
+ ]
59
+
60
+ def generate_city_design():
61
+ # Randomly choose a surprising design concept
62
+ return random.choice(design_concepts)
63
+
64
+
65
+ # User inputs for the analysis
66
+ design_input = st.text_area("Enter your urban design concept:")
67
+
68
+ if st.button('Analyze Design'):
69
+ if design_input:
70
+ # Assemble the crew with the defined tasks
71
+ sustainability_crew = Crew(
72
+ agents=[environmental_agent, human_traffic_carbon_footprint_agent],
73
+ tasks=[assess_sustainability_task, mitigate_traffic_carbon_footprint_task],
74
+ verbose=True
75
+ )
76
+
77
+ # Run the crew to analyze the design
78
+ result = sustainability_crew.kickoff()
79
+
80
+ # Display the analysis results (this is a placeholder, adjust based on your actual result structure)
81
+ st.subheader('Analysis Results')
82
+ st.write(result) # Make sure to format the result in a user-friendly way
83
+ else:
84
+ st.write("Please enter a design concept to analyze.")
85
+
86
+ # Define the Sensor class
87
+ class Sensor:
88
+ def __init__(self, location):
89
+ self.location = location
90
+ self.carbon_levels = []
91
+
92
+ def detect_carbon(self, carbon_emission):
93
+ self.carbon_levels.append(carbon_emission)
94
+
95
+ def get_average_carbon(self):
96
+ return sum(self.carbon_levels) / len(self.carbon_levels) if self.carbon_levels else 0
97
+
98
+ # Define the AIAgent class
99
+ class AIAgent:
100
+ def analyze_data(self, sensor):
101
+ average_carbon = sensor.get_average_carbon()
102
+ return average_carbon, self.make_decision(average_carbon)
103
+
104
+ def make_decision(self, average_carbon):
105
+ if average_carbon > 50:
106
+ return "Implement carbon reduction measures."
107
+ else:
108
+ return "Maintain current city operations."
109
+
110
+ # Define the SmartCity class
111
+ class SmartCity:
112
+ def __init__(self, sensors, agent):
113
+ self.sensors = sensors
114
+ self.agent = agent
115
+
116
+ def simulate_human_traffic(self):
117
+ for sensor in self.sensors:
118
+ carbon_emission = random.uniform(10, 100)
119
+ sensor.detect_carbon(carbon_emission)
120
+
121
+ def run_simulation(self):
122
+ self.simulate_human_traffic()
123
+ results = {}
124
+ for sensor in self.sensors:
125
+ avg_carbon, decision = self.agent.analyze_data(sensor)
126
+ results[sensor.location] = (avg_carbon, decision)
127
+ return results
128
+
129
+ # Streamlit app starts here
130
+ st.title('Smart City Carbon Emission Simulation')
131
+
132
+ # Number of sensors input
133
+ number_of_sensors = st.sidebar.number_input('Number of Sensors', min_value=1, value=3)
134
+
135
+ # Create sensors and an AI agent
136
+ sensors = [Sensor(location=f"Location {i+1}") for i in range(number_of_sensors)]
137
+ agent = AIAgent()
138
+
139
+ # Initialize the Smart City
140
+ smart_city = SmartCity(sensors, agent)
141
+
142
+ if st.button('Run Daily Simulation'):
143
+ results = smart_city.run_simulation()
144
+ for location, (avg_carbon, decision) in results.items():
145
+ st.write(f"**{location}** - Average Carbon Emission: {avg_carbon:.2f}")
146
+ st.write(f"Decision: {decision}")
147
+ else:
148
+ st.write("Click the button to run the simulation for a day.")
149
+
150
+ def get_sensor_data(traffic_density):
151
+ # This function should be replaced with real sensor data acquisition logic
152
+ return {'traffic_density': traffic_density}
153
+
154
+ # Placeholder function to simulate analyzing sensor data
155
+ def analyze_sensor_data(data):
156
+ # This function should be replaced with real data analysis logic
157
+ return {'groundedness': 0.9, 'hallucination': 0.1}
158
+
159
+ # Placeholder function to simulate running simulations
160
+ def run_simulation(parameters):
161
+ # This function should be replaced with real simulation logic
162
+ return {'simulation_result': 'Reduced traffic congestion by 30%'}
163
+
164
+ # Placeholder function to simulate creating eBooks
165
+ def create_ebook(ideas):
166
+ # This function should be replaced with real eBook creation logic
167
+ return 'eBook with innovative urban planning ideas generated.'
168
+
169
+ # Streamlit application
170
+ st.title('Smart City Design Tool')
171
+
172
+ # Sensor data simulation inputs
173
+ st.header('Sensor Data Input')
174
+ traffic_density = st.slider('Select Traffic Density', min_value=0, max_value=100, value=50)
175
+
176
+ # When the user clicks the 'Analyze Data' button, run the analysis and display the results
177
+ if st.button('Analyze Data'):
178
+ # Simulate getting sensor data based on inputs
179
+ sensor_data = get_sensor_data(traffic_density)
180
+
181
+ # Execute the crew to analyze the design and generate solutions
182
+ analysis_results = analyze_sensor_data(sensor_data)
183
+ hin = analysis_results['groundedness'] * analysis_results['hallucination']
184
+ simulation_parameters = {'traffic_density': sensor_data['traffic_density']}
185
+ simulation_result = run_simulation(simulation_parameters)
186
+ new_ideas = ['Urban Green Spaces', 'Renewable Energy Sources']
187
+ ebook = create_ebook(new_ideas)
188
+
189
+ # Display the results
190
+ st.write(f"HIN: {hin}")
191
+ st.write(f"Simulation Result: {simulation_result['simulation_result']}")
192
+ st.write(f"eBook Content: {ebook}")
193
+
194
+
195
+
196
+ # Simulate sensor data
197
+ def simulate_sensor_data(sensor_type, num_entries=100):
198
+ timestamps = [datetime.now() - timedelta(minutes=15 * i) for i in range(num_entries)]
199
+ if sensor_type == "temperature":
200
+ data = np.random.normal(loc=25, scale=5, size=num_entries) # Average temp with some variation
201
+ elif sensor_type == "humidity":
202
+ data = np.random.uniform(low=30, high=70, size=num_entries) # Random humidity levels
203
+ elif sensor_type == "energy":
204
+ data = np.random.uniform(low=100, high=500, size=num_entries) # Energy usage in kWh
205
+ elif sensor_type == "water":
206
+ data = np.random.uniform(low=100, high=1000, size=num_entries) # Water usage in gallons
207
+ else:
208
+ data = np.random.rand(num_entries) # Generic data for other sensors
209
+
210
+ return pd.DataFrame({"Timestamp": timestamps, "Value": data})
211
+
212
+ # AI analysis (simple linear regression for demonstration)
213
+ def ai_analysis(df):
214
+ df["Timestamp_ordinal"] = df["Timestamp"].map(datetime.toordinal)
215
+ X = df[["Timestamp_ordinal"]]
216
+ y = df["Value"]
217
+ model = LinearRegression()
218
+ model.fit(X, y)
219
+ return model.predict(X)
220
+
221
+ # Main app function
222
+ def main():
223
+ st.title("Custom Green City Builder")
224
+
225
+ # Sidebar for sensor selection
226
+ sensor_type = st.sidebar.selectbox("Select Sensor Type", ["temperature", "humidity", "energy", "water", "other"])
227
+
228
+ # Simulate and display sensor data
229
+ data = simulate_sensor_data(sensor_type)
230
+ st.write(f"Simulated Data for {sensor_type.capitalize()} Sensor")
231
+ st.line_chart(data.set_index("Timestamp"))
232
+
233
+ # AI analysis and prediction
234
+ if st.button("Run AI Analysis"):
235
+ predictions = ai_analysis(data)
236
+ data["Predictions"] = predictions
237
+ fig = px.line(data, x="Timestamp", y=["Value", "Predictions"], labels={"value": "Sensor Readings", "variable": "Type"})
238
+ st.plotly_chart(fig)
239
+
240
+ if __name__ == "__main__":
241
+ main()