Spaces:
Sleeping
Sleeping
import gradio as gr | |
import numpy as np | |
import pandas as pd | |
import torch | |
import matplotlib.pyplot as plt | |
import json | |
import time | |
import os | |
from functools import partial | |
import datetime | |
import plotly.graph_objects as go | |
from plotly.subplots import make_subplots | |
# Global variables to store models | |
tokenizer = None | |
ner_pipeline = None | |
pos_pipeline = None | |
intent_classifier = None | |
semantic_model = None | |
stt_model = None # Speech-to-text model | |
models_loaded = False | |
# Database to store keyword ranking history (in-memory database for this example) | |
# In a real app, you would use a proper database | |
ranking_history = {} | |
def load_models(progress=gr.Progress()): | |
"""Lazy-load models only when needed""" | |
global tokenizer, ner_pipeline, pos_pipeline, intent_classifier, semantic_model, stt_model, models_loaded | |
if models_loaded: | |
return True | |
try: | |
progress(0.1, desc="Loading models...") | |
# Use smaller models and load them sequentially to reduce memory pressure | |
from transformers import AutoTokenizer, pipeline | |
progress(0.2, desc="Loading tokenizer...") | |
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased") | |
progress(0.3, desc="Loading NER model...") | |
ner_pipeline = pipeline("ner", model="dslim/bert-base-NER") | |
progress(0.4, desc="Loading POS model...") | |
# Use smaller POS model | |
from transformers import AutoModelForTokenClassification, BertTokenizerFast | |
pos_model = AutoModelForTokenClassification.from_pretrained("vblagoje/bert-english-uncased-finetuned-pos") | |
pos_tokenizer = BertTokenizerFast.from_pretrained("vblagoje/bert-english-uncased-finetuned-pos") | |
pos_pipeline = pipeline("token-classification", model=pos_model, tokenizer=pos_tokenizer) | |
progress(0.6, desc="Loading intent classifier...") | |
# Use a smaller model for zero-shot classification | |
intent_classifier = pipeline( | |
"zero-shot-classification", | |
model="typeform/distilbert-base-uncased-mnli", # Smaller than BART | |
device=0 if torch.cuda.is_available() else -1 # Use GPU if available | |
) | |
progress(0.7, desc="Loading speech-to-text model...") | |
try: | |
# Load automatic speech recognition model | |
from transformers import WhisperProcessor, WhisperForConditionalGeneration | |
processor = WhisperProcessor.from_pretrained("openai/whisper-small.en") | |
stt_model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-small.en") | |
stt_model = (processor, stt_model) | |
except Exception as e: | |
print(f"Warning: Could not load speech-to-text model: {str(e)}") | |
stt_model = None # Set to None so we can check if it's available | |
progress(0.8, desc="Loading semantic model...") | |
try: | |
from sentence_transformers import SentenceTransformer | |
semantic_model = SentenceTransformer('all-MiniLM-L6-v2') | |
except Exception as e: | |
print(f"Warning: Could not load semantic model: {str(e)}") | |
semantic_model = None # Set to None so we can check if it's available | |
progress(1.0, desc="Models loaded successfully!") | |
models_loaded = True | |
return True | |
except Exception as e: | |
print(f"Error loading models: {str(e)}") | |
return f"Error: {str(e)}" | |
def speech_to_text(audio_path): | |
"""Convert speech to text using the loaded speech-to-text model""" | |
if stt_model is None: | |
return "Speech-to-text model not loaded. Please try text input instead." | |
try: | |
import librosa | |
import numpy as np | |
# Load audio file | |
audio, sr = librosa.load(audio_path, sr=16000) | |
# Process audio with Whisper | |
processor, model = stt_model | |
input_features = processor(audio, sampling_rate=16000, return_tensors="pt").input_features | |
# Generate token ids | |
predicted_ids = model.generate(input_features) | |
# Decode token ids to text | |
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)[0] | |
return transcription | |
except Exception as e: | |
print(f"Error in speech_to_text: {str(e)}") | |
return f"Error processing speech: {str(e)}" | |
def handle_voice_input(audio): | |
"""Handle voice input and convert to text""" | |
if audio is None: | |
return "No audio detected. Please try again." | |
try: | |
# Convert speech to text | |
text = speech_to_text(audio) | |
return text | |
except Exception as e: | |
print(f"Error in handle_voice_input: {str(e)}") | |
return f"Error: {str(e)}" | |
def simulate_google_serp(keyword, num_results=10): | |
"""Simulate Google SERP results for a keyword""" | |
try: | |
# In a real implementation, this would call the Google API | |
# For now, we'll generate fake SERP data | |
# Deterministic seed for consistent results by keyword | |
np.random.seed(sum(ord(c) for c in keyword)) | |
serp_results = [] | |
domains = [ | |
"example.com", "wikipedia.org", "medium.com", "github.com", | |
"stackoverflow.com", "amazon.com", "youtube.com", "reddit.com", | |
"linkedin.com", "twitter.com", "facebook.com", "instagram.com" | |
] | |
for i in range(1, num_results + 1): | |
domain = domains[i % len(domains)] | |
title = f"{keyword.title()} - {domain.split('.')[0].title()} Resource #{i}" | |
snippet = f"This is a simulated SERP result for '{keyword}'. Result #{i} would provide relevant information about this topic." | |
url = f"https://www.{domain}/{keyword.replace(' ', '-')}-resource-{i}" | |
position = i | |
ctr = round(0.3 * (0.85 ** (i - 1)), 4) # Simulate click-through rate decay | |
serp_results.append({ | |
"position": position, | |
"title": title, | |
"url": url, | |
"domain": domain, | |
"snippet": snippet, | |
"ctr_estimate": ctr, | |
"impressions_estimate": np.random.randint(1000, 10000) | |
}) | |
return serp_results | |
except Exception as e: | |
print(f"Error in simulate_google_serp: {str(e)}") | |
return [] | |
def update_ranking_history(keyword, serp_results): | |
"""Update the ranking history for a keyword""" | |
try: | |
# Get current timestamp | |
timestamp = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S") | |
# Initialize if keyword not in history | |
if keyword not in ranking_history: | |
ranking_history[keyword] = [] | |
# Add new entry | |
ranking_history[keyword].append({ | |
"timestamp": timestamp, | |
"results": serp_results[:5] # Store top 5 results for history | |
}) | |
# Keep only last 10 entries for each keyword | |
if len(ranking_history[keyword]) > 10: | |
ranking_history[keyword] = ranking_history[keyword][-10:] | |
return True | |
except Exception as e: | |
print(f"Error in update_ranking_history: {str(e)}") | |
return False | |
def get_semantic_similarity(token, comparison_terms): | |
"""Calculate semantic similarity between a token and comparison terms""" | |
try: | |
from sklearn.metrics.pairwise import cosine_similarity | |
token_embedding = semantic_model.encode([token])[0] | |
comparison_embeddings = semantic_model.encode(comparison_terms) | |
similarities = [] | |
for i, emb in enumerate(comparison_embeddings): | |
similarity = cosine_similarity([token_embedding], [emb])[0][0] | |
similarities.append((comparison_terms[i], float(similarity))) | |
return sorted(similarities, key=lambda x: x[1], reverse=True) | |
except Exception as e: | |
print(f"Error in semantic similarity: {str(e)}") | |
# Return dummy data on error | |
return [(term, 0.5) for term in comparison_terms] | |
def get_token_colors(token_type): | |
colors = { | |
"prefix": "#D8BFD8", # Light purple | |
"suffix": "#AEDAA4", # Light green | |
"stem": "#A4C2F4", # Light blue | |
"compound_first": "#FFCC80", # Light orange | |
"compound_second": "#FFCC80", # Light orange | |
"word": "#E5E5E5" # Light gray | |
} | |
return colors.get(token_type, "#E5E5E5") | |
def simulate_historical_data(token): | |
"""Generate simulated historical usage data for a token""" | |
eras = ["1900s", "1950s", "1980s", "2000s", "2010s", "Present"] | |
# Different patterns based on token characteristics | |
if len(token) > 8: | |
# Possibly a technical term - recent growth | |
values = [10, 20, 30, 60, 85, 95] | |
elif token.startswith(("un", "re", "de", "pre")): | |
# Prefix words tend to be older | |
values = [45, 50, 60, 70, 75, 80] | |
else: | |
# Standard pattern for common words | |
# Use token hash value modulo instead of hash() directly to avoid different results across runs | |
base = 50 + (sum(ord(c) for c in token) % 30) | |
# Use a fixed seed for reproducibility | |
np.random.seed(sum(ord(c) for c in token)) | |
noise = np.random.normal(0, 5, 6) | |
values = [max(5, min(95, base + i*5 + n)) for i, n in enumerate(noise)] | |
return list(zip(eras, values)) | |
def generate_origin_data(token): | |
"""Generate simulated origin/etymology data for a token""" | |
origins = [ | |
{"era": "Ancient", "language": "Latin"}, | |
{"era": "Ancient", "language": "Greek"}, | |
{"era": "Medieval", "language": "Old English"}, | |
{"era": "16th century", "language": "French"}, | |
{"era": "18th century", "language": "Germanic"}, | |
{"era": "19th century", "language": "Anglo-Saxon"}, | |
{"era": "20th century", "language": "Modern English"} | |
] | |
# Deterministic selection based on the token | |
index = sum(ord(c) for c in token) % len(origins) | |
origin = origins[index] | |
note = f"First appeared in {origin['era']} texts derived from {origin['language']}." | |
origin["note"] = note | |
return origin | |
def analyze_token_types(tokens): | |
"""Identify token types (prefix, suffix, compound, etc.)""" | |
processed_tokens = [] | |
prefixes = ["un", "re", "de", "pre", "post", "anti", "pro", "inter", "sub", "super"] | |
suffixes = ["ing", "ed", "ly", "ment", "tion", "able", "ible", "ness", "ful", "less"] | |
for token in tokens: | |
token_text = token.lower() | |
token_type = "word" | |
# Check for prefixes | |
for prefix in prefixes: | |
if token_text.startswith(prefix) and len(token_text) > len(prefix) + 2: | |
if token_text != prefix: # Make sure the word isn't just the prefix | |
token_type = "prefix" | |
break | |
# Check for suffixes | |
if token_type == "word": | |
for suffix in suffixes: | |
if token_text.endswith(suffix) and len(token_text) > len(suffix) + 2: | |
token_type = "suffix" | |
break | |
# Check for compound words (simplified) | |
if token_type == "word" and len(token_text) > 8: | |
token_type = "compound_first" # Simplified - in reality would need more analysis | |
processed_tokens.append({ | |
"text": token_text, | |
"type": token_type | |
}) | |
return processed_tokens | |
def plot_historical_data(historical_data): | |
"""Create a plot of historical usage data, with error handling""" | |
try: | |
eras = [item[0] for item in historical_data] | |
values = [item[1] for item in historical_data] | |
plt.figure(figsize=(8, 3)) | |
plt.bar(eras, values, color='skyblue') | |
plt.title('Historical Usage') | |
plt.xlabel('Era') | |
plt.ylabel('Usage Level') | |
plt.ylim(0, 100) | |
plt.xticks(rotation=45) | |
plt.tight_layout() | |
return plt | |
except Exception as e: | |
print(f"Error in plot_historical_data: {str(e)}") | |
# Return a simple error plot | |
plt.figure(figsize=(8, 3)) | |
plt.text(0.5, 0.5, f"Error creating plot: {str(e)}", | |
horizontalalignment='center', verticalalignment='center') | |
plt.axis('off') | |
return plt | |
def create_evolution_chart(data, forecast_months=6, growth_scenario="Moderate"): | |
"""Create a simpler chart that's more compatible with Gradio""" | |
try: | |
import plotly.graph_objects as go | |
# Create a basic figure without subplots | |
fig = go.Figure() | |
# Add main trace for search volume | |
fig.add_trace( | |
go.Scatter( | |
x=[item["month"] for item in data], | |
y=[item["searchVolume"] for item in data], | |
name="Search Volume", | |
line=dict(color="#8884d8", width=3), | |
mode="lines+markers" | |
) | |
) | |
# Scale the other metrics to be visible on the same chart | |
max_volume = max([item["searchVolume"] for item in data]) | |
scale_factor = max_volume / 100 | |
# Add competition score (scaled) | |
fig.add_trace( | |
go.Scatter( | |
x=[item["month"] for item in data], | |
y=[item["competitionScore"] * scale_factor for item in data], | |
name="Competition Score", | |
line=dict(color="#82ca9d", width=2, dash="dot"), | |
mode="lines+markers" | |
) | |
) | |
# Add intent clarity (scaled) | |
fig.add_trace( | |
go.Scatter( | |
x=[item["month"] for item in data], | |
y=[item["intentClarity"] * scale_factor for item in data], | |
name="Intent Clarity", | |
line=dict(color="#ffc658", width=2, dash="dash"), | |
mode="lines+markers" | |
) | |
) | |
# Simple layout | |
fig.update_layout( | |
title=f"Keyword Evolution Forecast ({growth_scenario} Growth)", | |
xaxis_title="Month", | |
yaxis_title="Value", | |
legend=dict(orientation="h", y=1.1), | |
height=500 | |
) | |
return fig | |
except Exception as e: | |
print(f"Error in chart creation: {str(e)}") | |
# Fallback to an even simpler chart | |
fig = go.Figure(data=go.Scatter(x=[1, 2, 3], y=[4, 1, 2])) | |
fig.update_layout(title="Fallback Chart (Error occurred)") | |
return fig | |
def create_ranking_history_chart(keyword_history): | |
"""Create a chart showing keyword ranking history over time""" | |
try: | |
if not keyword_history or len(keyword_history) < 2: | |
# Not enough data for a meaningful chart | |
fig = go.Figure() | |
fig.update_layout( | |
title="Insufficient Ranking Data", | |
annotations=[{ | |
"text": "Need at least 2 data points for ranking history", | |
"showarrow": False, | |
"font": {"size": 16}, | |
"xref": "paper", | |
"yref": "paper", | |
"x": 0.5, | |
"y": 0.5 | |
}] | |
) | |
return fig | |
# Create a figure | |
fig = go.Figure() | |
# Extract timestamps and convert to datetime objects | |
timestamps = [entry["timestamp"] for entry in keyword_history] | |
dates = [datetime.datetime.strptime(ts, "%Y-%m-%d %H:%M:%S") for ts in timestamps] | |
# Get unique domains from all results | |
all_domains = set() | |
for entry in keyword_history: | |
for result in entry["results"]: | |
all_domains.add(result["domain"]) | |
# Colors for different domains | |
domain_colors = {} | |
color_palette = [ | |
"#1f77b4", "#ff7f0e", "#2ca02c", "#d62728", "#9467bd", | |
"#8c564b", "#e377c2", "#7f7f7f", "#bcbd22", "#17becf" | |
] | |
for i, domain in enumerate(all_domains): | |
domain_colors[domain] = color_palette[i % len(color_palette)] | |
# Track domains and their positions over time | |
domain_tracking = {domain: {"x": [], "y": [], "text": []} for domain in all_domains} | |
for i, entry in enumerate(keyword_history): | |
for result in entry["results"]: | |
domain = result["domain"] | |
position = result["position"] | |
title = result["title"] | |
domain_tracking[domain]["x"].append(dates[i]) | |
domain_tracking[domain]["y"].append(position) | |
domain_tracking[domain]["text"].append(title) | |
# Add traces for each domain | |
for domain, data in domain_tracking.items(): | |
if len(data["x"]) > 0: # Only add domains that have data | |
fig.add_trace( | |
go.Scatter( | |
x=data["x"], | |
y=data["y"], | |
mode="lines+markers", | |
name=domain, | |
line=dict(color=domain_colors[domain]), | |
hovertemplate="%{text}<br>Position: %{y}<br>Date: %{x}<extra></extra>", | |
text=data["text"], | |
marker=dict(size=8) | |
) | |
) | |
# Update layout | |
fig.update_layout( | |
title="Keyword Ranking History", | |
xaxis_title="Date", | |
yaxis_title="Position", | |
yaxis=dict(autorange="reversed"), # Invert y-axis so position 1 is on top | |
hovermode="closest", | |
height=500 | |
) | |
return fig | |
except Exception as e: | |
print(f"Error in create_ranking_history_chart: {str(e)}") | |
# Return fallback chart | |
fig = go.Figure() | |
fig.update_layout( | |
title="Error Creating Ranking Chart", | |
annotations=[{ | |
"text": f"Error: {str(e)}", | |
"showarrow": False, | |
"font": {"size": 14}, | |
"xref": "paper", | |
"yref": "paper", | |
"x": 0.5, | |
"y": 0.5 | |
}] | |
) | |
return fig | |
def generate_serp_html(keyword, serp_results): | |
"""Generate HTML for SERP results""" | |
if not serp_results: | |
return "<div>No SERP results available</div>" | |
html = f""" | |
<div style="font-family: Arial, sans-serif; padding: 20px; border: 1px solid #ddd; border-radius: 8px;"> | |
<h2 style="margin-top: 0;">SERP Results for "{keyword}"</h2> | |
<div style="background-color: #f5f5f5; padding: 10px; border-radius: 4px; margin-bottom: 20px;"> | |
<div style="color: #666; font-size: 12px;">This is a simulated SERP. In a real application, this would use the Google API.</div> | |
</div> | |
<div class="serp-results" style="display: flex; flex-direction: column; gap: 16px;"> | |
""" | |
for result in serp_results: | |
position = result["position"] | |
title = result["title"] | |
url = result["url"] | |
snippet = result["snippet"] | |
domain = result["domain"] | |
ctr = result["ctr_estimate"] | |
impressions = result["impressions_estimate"] | |
html += f""" | |
<div class="serp-result" style="padding: 15px; border: 1px solid #e2e8f0; border-radius: 6px; position: relative;"> | |
<div style="position: absolute; top: -10px; left: -10px; background-color: #4299e1; color: white; width: 24px; height: 24px; border-radius: 50%; display: flex; align-items: center; justify-content: center; font-size: 12px;"> | |
{position} | |
</div> | |
<div style="margin-bottom: 5px;"> | |
<a href="#" style="font-size: 18px; color: #1a73e8; text-decoration: none; font-weight: 500;">{title}</a> | |
</div> | |
<div style="margin-bottom: 8px; color: #006621; font-size: 14px;">{url}</div> | |
<div style="color: #4d5156; font-size: 14px;">{snippet}</div> | |
<div style="display: flex; margin-top: 10px; font-size: 12px; color: #666;"> | |
<div style="margin-right: 15px;"><span style="font-weight: 500;">CTR:</span> {ctr:.2%}</div> | |
<div><span style="font-weight: 500;">Est. Impressions:</span> {impressions:,}</div> | |
</div> | |
</div> | |
""" | |
html += """ | |
</div> | |
</div> | |
""" | |
return html | |
def generate_token_visualization_html(token_analysis, full_analysis): | |
"""Generate HTML for token visualization""" | |
html = """ | |
<div style="font-family: Arial, sans-serif; padding: 20px; border: 1px solid #ddd; border-radius: 8px;"> | |
<h2 style="margin-top: 0;">Token Visualization</h2> | |
<div style="margin-bottom: 20px; padding: 15px; background-color: #f8f9fa; border-radius: 6px;"> | |
<div style="margin-bottom: 8px; font-weight: bold; color: #4a5568;">Human View:</div> | |
<div style="display: flex; flex-wrap: wrap; gap: 8px;"> | |
""" | |
# Add human view tokens | |
for token in token_analysis: | |
html += f""" | |
<div style="padding: 6px 12px; background-color: white; border: 1px solid #cbd5e0; border-radius: 4px;"> | |
{token['text']} | |
</div> | |
""" | |
html += """ | |
</div> | |
</div> | |
<div style="text-align: center; margin: 15px 0;"> | |
<span style="font-size: 20px;">↓</span> | |
</div> | |
<div style="padding: 15px; background-color: #f0fff4; border-radius: 6px;"> | |
<div style="margin-bottom: 8px; font-weight: bold; color: #2f855a;">Machine View:</div> | |
<div style="display: flex; flex-wrap: wrap; gap: 8px;"> | |
""" | |
# Add machine view tokens | |
for token in full_analysis: | |
bg_color = get_token_colors(token["type"]) | |
html += f""" | |
<div style="padding: 6px 12px; background-color: {bg_color}; border: 1px solid #a0aec0; border-radius: 4px; font-family: monospace;"> | |
{token['token']} | |
<span style="font-size: 10px; opacity: 0.7; display: block;">{token['type']}</span> | |
</div> | |
""" | |
html += """ | |
</div> | |
</div> | |
<div style="margin-top: 20px; display: grid; grid-template-columns: repeat(3, 1fr); gap: 10px; text-align: center;"> | |
""" | |
# Add stats | |
word_count = len(token_analysis) | |
token_count = len(full_analysis) | |
ratio = round(token_count / max(1, word_count), 2) | |
html += f""" | |
<div style="background-color: #ebf8ff; padding: 10px; border-radius: 6px;"> | |
<div style="font-size: 24px; font-weight: bold; color: #3182ce;">{word_count}</div> | |
<div style="font-size: 14px; color: #4299e1;">Words</div> | |
</div> | |
<div style="background-color: #f0fff4; padding: 10px; border-radius: 6px;"> | |
<div style="font-size: 24px; font-weight: bold; color: #38a169;">{token_count}</div> | |
<div style="font-size: 14px; color: #48bb78;">Tokens</div> | |
</div> | |
<div style="background-color: #faf5ff; padding: 10px; border-radius: 6px;"> | |
<div style="font-size: 24px; font-weight: bold; color: #805ad5;">{ratio}</div> | |
<div style="font-size: 14px; color: #9f7aea;">Tokens per Word</div> | |
</div> | |
""" | |
html += """ | |
</div> | |
</div> | |
""" | |
return html | |
def generate_full_analysis_html(keyword, token_analysis, intent_analysis, evolution_potential, trends): | |
"""Generate HTML for full keyword analysis""" | |
html = f""" | |
<div style="font-family: Arial, sans-serif; padding: 20px; border: 1px solid #ddd; border-radius: 8px;"> | |
<h2 style="margin-top: 0;">Keyword DNA Analysis for: {keyword}</h2> | |
<div style="display: grid; grid-template-columns: 1fr 1fr; gap: 15px; margin-bottom: 20px;"> | |
<div style="padding: 15px; border: 1px solid #e2e8f0; border-radius: 6px;"> | |
<h3 style="margin-top: 0; font-size: 16px;">Intent Gene</h3> | |
<div style="display: flex; justify-content: space-between; margin-bottom: 10px;"> | |
<span>Type:</span> | |
<span>{intent_analysis['type']}</span> | |
</div> | |
<div style="display: flex; justify-content: space-between; align-items: center;"> | |
<span>Strength:</span> | |
<div style="width: 120px; height: 8px; background-color: #edf2f7; border-radius: 4px; overflow: hidden;"> | |
<div style="height: 100%; background-color: #48bb78; width: {intent_analysis['strength']}%;"></div> | |
</div> | |
</div> | |
</div> | |
<div style="padding: 15px; border: 1px solid #e2e8f0; border-radius: 6px;"> | |
<h3 style="margin-top: 0; font-size: 16px;">Evolution Potential</h3> | |
<div style="display: flex; justify-content: center; align-items: center; height: 100px;"> | |
<div style="position: relative; width: 100px; height: 100px;"> | |
<div style="position: absolute; inset: 0; display: flex; align-items: center; justify-content: center;"> | |
<span style="font-size: 24px; font-weight: bold;">{evolution_potential}</span> | |
</div> | |
<svg width="100" height="100" viewBox="0 0 36 36"> | |
<path | |
d="M18 2.0845 a 15.9155 15.9155 0 0 1 0 31.831 a 15.9155 15.9155 0 0 1 0 -31.831" | |
fill="none" | |
stroke="#4CAF50" | |
stroke-width="3" | |
stroke-dasharray="{evolution_potential}, 100" | |
/> | |
</svg> | |
</div> | |
</div> | |
</div> | |
</div> | |
<div style="padding: 15px; border: 1px solid #e2e8f0; border-radius: 6px; margin-bottom: 20px;"> | |
<h3 style="margin-top: 0; font-size: 16px;">Future Mutations</h3> | |
<div style="display: flex; flex-direction: column; gap: 8px;"> | |
""" | |
# Add trends | |
for trend in trends: | |
html += f""" | |
<div style="display: flex; align-items: center; gap: 8px;"> | |
<span style="color: #48bb78;">↗</span> | |
<span>{trend}</span> | |
</div> | |
""" | |
html += """ | |
</div> | |
</div> | |
<h3 style="margin-bottom: 10px;">Token Details & Historical Analysis</h3> | |
""" | |
# Add token details | |
for token in token_analysis: | |
html += f""" | |
<div style="padding: 15px; border: 1px solid #e2e8f0; border-radius: 6px; margin-bottom: 15px;"> | |
<div style="display: flex; justify-content: space-between; align-items: center; margin-bottom: 10px;"> | |
<div style="display: flex; align-items: center; gap: 8px;"> | |
<span style="font-size: 18px; font-weight: medium;">{token['token']}</span> | |
<span style="padding: 2px 8px; background-color: #edf2f7; border-radius: 4px; font-size: 12px;">{token['posTag']}</span> | |
""" | |
if token['entityType']: | |
html += f""" | |
<span style="padding: 2px 8px; background-color: #ebf8ff; color: #3182ce; border-radius: 4px; font-size: 12px; display: flex; align-items: center;"> | |
ⓘ {token['entityType']} | |
</span> | |
""" | |
html += f""" | |
</div> | |
<div style="display: flex; align-items: center; gap: 4px;"> | |
<span style="font-size: 12px; color: #718096;">Importance:</span> | |
<div style="width: 64px; height: 8px; background-color: #edf2f7; border-radius: 4px; overflow: hidden;"> | |
<div style="height: 100%; background-color: #4299e1; width: {token['importance']}%;"></div> | |
</div> | |
</div> | |
</div> | |
<div style="margin-top: 15px;"> | |
<div style="font-size: 12px; color: #718096; margin-bottom: 4px;">Historical Relevance:</div> | |
<div style="border: 1px solid #e2e8f0; border-radius: 4px; padding: 10px; background-color: #f7fafc;"> | |
<div style="font-size: 12px; margin-bottom: 8px;"> | |
<span style="font-weight: 500;">Origin: </span> | |
<span>{token['origin']['era']}, </span> | |
<span style="font-style: italic;">{token['origin']['language']}</span> | |
</div> | |
<div style="font-size: 12px; margin-bottom: 12px;">{token['origin']['note']}</div> | |
<div style="display: flex; align-items: flex-end; height: 50px; gap: 4px; margin-top: 8px;"> | |
""" | |
# Add historical data bars | |
for period, value in token['historicalData']: | |
opacity = 0.3 + (token['historicalData'].index((period, value)) * 0.1) | |
html += f""" | |
<div style="display: flex; flex-direction: column; align-items: center; flex: 1;"> | |
<div style="width: 100%; background-color: rgba(66, 153, 225, {opacity}); border-radius: 2px 2px 0 0; height: {max(4, value)}%;"></div> | |
<div style="font-size: 9px; margin-top: 4px; color: #718096; transform: rotate(45deg); transform-origin: top left; white-space: nowrap;"> | |
{period} | |
</div> | |
</div> | |
""" | |
html += """ | |
</div> | |
</div> | |
</div> | |
</div> | |
""" | |
html += """ | |
</div> | |
""" | |
return html | |
def analyze_keyword(keyword, forecast_months=6, growth_scenario="Moderate", get_serp=False, progress=gr.Progress()): | |
"""Main function to analyze a keyword""" | |
if not keyword or not keyword.strip(): | |
return ( | |
"<div>Please enter a keyword to analyze</div>", | |
"<div>Please enter a keyword to analyze</div>", | |
None, | |
None, | |
None, | |
None, | |
None | |
) | |
progress(0.1, desc="Starting analysis...") | |
# Load models if not already loaded | |
model_status = load_models(progress) | |
if isinstance(model_status, str) and model_status.startswith("Error"): | |
return ( | |
f"<div style='color:red;'>{model_status}</div>", | |
f"<div style='color:red;'>{model_status}</div>", | |
None, | |
None, | |
None, | |
None, | |
None | |
) | |
try: | |
# Basic tokenization - just split on spaces for simplicity | |
words = keyword.strip().lower().split() | |
progress(0.2, desc="Analyzing tokens...") | |
# Get token types | |
token_analysis = analyze_token_types(words) | |
progress(0.3, desc="Running NER...") | |
# Get NER tags - handle potential errors | |
try: | |
ner_results = ner_pipeline(keyword) | |
except Exception as e: | |
print(f"NER error: {str(e)}") | |
ner_results = [] | |
progress(0.4, desc="Running POS tagging...") | |
# Get POS tags - handle potential errors | |
try: | |
pos_results = pos_pipeline(keyword) | |
except Exception as e: | |
print(f"POS error: {str(e)}") | |
pos_results = [] | |
# Process and organize results | |
full_token_analysis = [] | |
for token in token_analysis: | |
# Find POS tag for this token | |
pos_tag = "NOUN" # Default | |
for pos_result in pos_results: | |
if pos_result["word"].lower() == token["text"]: | |
pos_tag = pos_result["entity"] | |
break | |
# Find entity type if any | |
entity_type = None | |
for ner_result in ner_results: | |
if ner_result["word"].lower() == token["text"]: | |
entity_type = ner_result["entity"] | |
break | |
# Generate historical data | |
historical_data = simulate_historical_data(token["text"]) | |
# Generate origin data | |
origin = generate_origin_data(token["text"]) | |
# Calculate importance (simplified algorithm) | |
importance = 60 + (len(token["text"]) * 2) | |
importance = min(95, importance) | |
# Generate more meaningful related terms using semantic similarity | |
if semantic_model is not None: | |
try: | |
# Generate some potential related terms | |
prefix_related = [f"about {token['text']}", f"what is {token['text']}", f"how to {token['text']}"] | |
synonym_candidates = ["similar", "equivalent", "comparable", "like", "related", "alternative"] | |
domain_terms = ["software", "marketing", "business", "science", "education", "technology"] | |
comparison_terms = prefix_related + synonym_candidates + domain_terms | |
# Get similarities | |
similarities = get_semantic_similarity(token['text'], comparison_terms) | |
# Use top 3 most similar terms | |
related_terms = [term for term, score in similarities[:3]] | |
except Exception as e: | |
print(f"Error generating semantic related terms: {str(e)}") | |
related_terms = [f"{token['text']}-related-1", f"{token['text']}-related-2"] | |
else: | |
# Fallback if semantic model isn't loaded | |
related_terms = [f"{token['text']}-related-1", f"{token['text']}-related-2"] | |
full_token_analysis.append({ | |
"token": token["text"], | |
"type": token["type"], | |
"posTag": pos_tag, | |
"entityType": entity_type, | |
"importance": importance, | |
"historicalData": historical_data, | |
"origin": origin, | |
"relatedTerms": related_terms | |
}) | |
progress(0.5, desc="Analyzing intent...") | |
# Intent analysis - handle potential errors | |
try: | |
intent_result = intent_classifier( | |
keyword, | |
candidate_labels=["informational", "navigational", "transactional"] | |
) | |
intent_analysis = { | |
"type": intent_result["labels"][0].capitalize(), | |
"strength": round(intent_result["scores"][0] * 100), | |
"mutations": [ | |
f"{intent_result['labels'][0]}-variation-1", | |
f"{intent_result['labels'][0]}-variation-2" | |
] | |
} | |
except Exception as e: | |
print(f"Intent classification error: {str(e)}") | |
intent_analysis = { | |
"type": "Informational", # Default fallback | |
"strength": 70, | |
"mutations": ["fallback-variation-1", "fallback-variation-2"] | |
} | |
# Evolution potential (simplified calculation) | |
evolution_potential = min(95, 65 + (len(keyword) % 30)) | |
# Predicted trends (simplified) | |
trends = [ | |
"Voice search adaptation", | |
"Visual search integration" | |
] | |
# Generate more realistic and keyword-specific evolution data | |
base_volume = 1000 + (len(keyword) * 100) | |
# Adjust growth factor based on scenario | |
if growth_scenario == "Conservative": | |
growth_factor = 1.05 + (0.02 * (sum(ord(c) for c in keyword) % 5)) | |
elif growth_scenario == "Aggressive": | |
growth_factor = 1.15 + (0.05 * (sum(ord(c) for c in keyword) % 5)) | |
else: # Moderate | |
growth_factor = 1.1 + (0.03 * (sum(ord(c) for c in keyword) % 5)) | |
evolution_data = [] | |
months = ["Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"][:int(forecast_months)] | |
current_volume = base_volume | |
for month in months: | |
# Add some randomness to make it look more realistic | |
np.random.seed(sum(ord(c) for c in month + keyword)) | |
random_factor = 0.9 + (0.2 * np.random.random()) | |
current_volume *= growth_factor * random_factor | |
evolution_data.append({ | |
"month": month, | |
"searchVolume": int(current_volume), | |
"competitionScore": min(95, 45 + (months.index(month) * 3) + (sum(ord(c) for c in keyword) % 10)), | |
"intentClarity": min(95, 80 + (months.index(month) * 2) + (sum(ord(c) for c in keyword) % 5)) | |
}) | |
progress(0.6, desc="Creating visualizations...") | |
# Create interactive evolution chart | |
evolution_chart = create_evolution_chart(evolution_data, forecast_months, growth_scenario) | |
# SERP results and ranking history (new feature) | |
serp_results = None | |
ranking_chart = None | |
serp_html = None | |
if get_serp: | |
progress(0.7, desc="Fetching SERP data...") | |
# Get SERP results | |
serp_results = simulate_google_serp(keyword) | |
# Update ranking history | |
update_ranking_history(keyword, serp_results) | |
progress(0.8, desc="Creating ranking charts...") | |
# Create ranking history chart | |
if keyword in ranking_history and len(ranking_history[keyword]) > 0: | |
ranking_chart = create_ranking_history_chart(ranking_history[keyword]) | |
# Generate SERP HTML | |
serp_html = generate_serp_html(keyword, serp_results) | |
# Generate HTML for token visualization | |
token_viz_html = generate_token_visualization_html(token_analysis, full_token_analysis) | |
# Generate HTML for full analysis | |
analysis_html = generate_full_analysis_html( | |
keyword, | |
full_token_analysis, | |
intent_analysis, | |
evolution_potential, | |
trends | |
) | |
# Generate JSON results | |
json_results = { | |
"keyword": keyword, | |
"tokenAnalysis": full_token_analysis, | |
"intentAnalysis": intent_analysis, | |
"evolutionPotential": evolution_potential, | |
"predictedTrends": trends, | |
"forecast": { | |
"months": forecast_months, | |
"scenario": growth_scenario, | |
"data": evolution_data | |
}, | |
"serpResults": serp_results | |
} | |
progress(1.0, desc="Analysis complete!") | |
return token_viz_html, analysis_html, json_results, evolution_chart, serp_html, ranking_chart, keyword | |
except Exception as e: | |
error_message = f"<div style='color:red;padding:20px;'>Error analyzing keyword: {str(e)}</div>" | |
print(f"Error in analyze_keyword: {str(e)}") | |
return error_message, error_message, None, None, None, None, None | |
# Create the Gradio interface | |
with gr.Blocks(css="footer {visibility: hidden}") as demo: | |
gr.Markdown("# Keyword DNA Analyzer") | |
gr.Markdown("Analyze the linguistic DNA of your keywords to understand their structure, intent, and potential.") | |
with gr.Row(): | |
with gr.Column(scale=1): | |
# Add voice search capabilities | |
with gr.Group(): | |
gr.Markdown("### Enter Keyword") | |
with gr.Row(): | |
input_text = gr.Textbox(label="Enter keyword to analyze", placeholder="e.g. artificial intelligence") | |
with gr.Row(): | |
audio_input = gr.Audio(type="filepath", label="Or use voice search") | |
voice_submit_btn = gr.Button("Convert Voice to Text", variant="secondary") | |
# Add SERP settings | |
with gr.Accordion("Analysis Settings", open=False): | |
with gr.Row(): | |
forecast_months = gr.Slider(minimum=3, maximum=12, value=6, step=1, label="Forecast Months") | |
include_serp = gr.Checkbox(label="Include SERP Analysis", value=True) | |
growth_scenario = gr.Radio( | |
["Conservative", "Moderate", "Aggressive"], | |
value="Moderate", | |
label="Growth Scenario" | |
) | |
# Add loading indicator | |
status_html = gr.HTML('<div style="color:gray;text-align:center;">Enter a keyword and click "Analyze DNA"</div>') | |
analyze_btn = gr.Button("Analyze DNA", variant="primary") | |
with gr.Row(): | |
example_btns = [] | |
for example in ["preprocessing", "breakdown", "artificial intelligence", "transformer model", "machine learning"]: | |
example_btns.append(gr.Button(example)) | |
with gr.Column(scale=2): | |
with gr.Tabs(): | |
with gr.Tab("Token Visualization"): | |
token_viz_html = gr.HTML() | |
with gr.Tab("Full Analysis"): | |
analysis_html = gr.HTML() | |
with gr.Tab("Evolution Chart"): | |
evolution_chart = gr.Plot(label="Keyword Evolution Forecast") | |
with gr.Tab("SERP Results"): | |
serp_html = gr.HTML() | |
with gr.Tab("Ranking History"): | |
ranking_chart = gr.Plot(label="Keyword Ranking History") | |
with gr.Tab("Raw Data"): | |
json_output = gr.JSON() | |
# Voice to text conversion handler | |
voice_submit_btn.click( | |
handle_voice_input, | |
inputs=[audio_input], | |
outputs=[input_text] | |
) | |
# Set up event handlers | |
analyze_btn.click( | |
lambda: '<div style="color:blue;text-align:center;">Loading models and analyzing... This may take a moment.</div>', | |
outputs=status_html | |
).then( | |
analyze_keyword, | |
inputs=[input_text, forecast_months, growth_scenario, include_serp], | |
outputs=[token_viz_html, analysis_html, json_output, evolution_chart, serp_html, ranking_chart, input_text] | |
).then( | |
lambda: '<div style="color:green;text-align:center;">Analysis complete!</div>', | |
outputs=status_html | |
) | |
# Example buttons | |
for btn in example_btns: | |
# Define the function that will be called when an example button is clicked | |
def set_example(btn_label): | |
return btn_label | |
btn.click( | |
set_example, | |
inputs=[btn], | |
outputs=[input_text] | |
).then( | |
lambda: '<div style="color:blue;text-align:center;">Loading models and analyzing... This may take a moment.</div>', | |
outputs=status_html | |
).then( | |
analyze_keyword, | |
inputs=[input_text, forecast_months, growth_scenario, include_serp], | |
outputs=[token_viz_html, analysis_html, json_output, evolution_chart, serp_html, ranking_chart, input_text] | |
).then( | |
lambda: '<div style="color:green;text-align:center;">Analysis complete!</div>', | |
outputs=status_html | |
) | |
# Launch the app | |
if __name__ == "__main__": | |
demo.launch() |