Spaces:
Runtime error
Runtime error
import gradio as gr | |
from PIL import Image | |
import torch | |
import torch.nn as nn | |
import torchvision.transforms as transforms | |
import torchvision.models as models | |
import os | |
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, pipeline | |
import torch | |
import gc | |
# Set device | |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
# Load the main classifier (Main_Classifier_best_model.pth) | |
main_model = models.resnet18(weights=None) # Updated: weights=None | |
num_ftrs = main_model.fc.in_features | |
main_model.fc = nn.Linear(num_ftrs, 3) # 3 classes: Soda drinks, Clothing, Mobile Phones | |
main_model.load_state_dict(torch.load('Main_Classifier_best_model.pth', map_location=device, weights_only=True)) # Updated: weights_only=True | |
main_model = main_model.to(device) | |
main_model.eval() | |
# Define class names for the main classifier based on folder structure | |
main_class_names = ['Clothing', 'Mobile Phones', 'Soda drinks'] | |
# Sub-classifier models | |
def load_soda_drinks_model(): | |
model = models.resnet18(weights=None) # Updated: weights=None | |
num_ftrs = model.fc.in_features | |
model.fc = nn.Linear(num_ftrs, 3) # 3 classes: Miranda, Pepsi, Seven Up | |
model.load_state_dict(torch.load('Soda_drinks_best_model.pth', map_location=device, weights_only=True)) # Updated | |
model = model.to(device) | |
model.eval() | |
return model | |
def load_clothing_model(): | |
model = models.resnet18(weights=None) # Updated: weights=None | |
num_ftrs = model.fc.in_features | |
model.fc = nn.Linear(num_ftrs, 3) # 2 classes: Pants, T-Shirt | |
model.load_state_dict(torch.load('Clothes_best_model.pth', map_location=device, weights_only=True)) # Updated | |
model = model.to(device) | |
model.eval() | |
return model | |
def load_mobile_phones_model(): | |
model = models.resnet18(weights=None) # Updated: weights=None | |
num_ftrs = model.fc.in_features | |
model.fc = nn.Linear(num_ftrs, 2) # 2 classes: Apple, Samsung | |
model.load_state_dict(torch.load('Phone_best_model.pth', map_location=device, weights_only=True)) # Updated | |
model = model.to(device) | |
model.eval() | |
return model | |
def convert_to_rgb(image): | |
""" | |
Converts 'P' mode images with transparency to 'RGBA', and then to 'RGB'. | |
This is to avoid transparency issues during model training. | |
""" | |
if image.mode in ('P', 'RGBA'): | |
return image.convert('RGB') | |
return image | |
# Define preprocessing transformations (same used during training) | |
preprocess = transforms.Compose([ | |
transforms.Lambda(convert_to_rgb), | |
transforms.Resize((224, 224)), # Resize here, no need for shape argument in gr.Image | |
transforms.ToTensor(), | |
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) # ImageNet normalization | |
]) | |
# Load Meta's LLaMA model for generating product descriptions | |
def load_llama(): | |
model_name = "meta-llama/Llama-3.2-1B-Instruct" | |
token = os.getenv("HUGGINGFACE_TOKEN") | |
tokenizer = AutoTokenizer.from_pretrained(model_name, use_auth_token=token) | |
model = AutoModelForCausalLM.from_pretrained(model_name, use_auth_token=token).to(device) | |
# Initialize the text generation pipeline with the prepared model | |
text_generation = pipeline( | |
"text-generation", | |
model=model, | |
tokenizer=tokenizer | |
) | |
return tokenizer, model | |
llama_tokenizer, llama_model = load_llama() | |
# Generate product description using external data and structured format | |
def generate_description(category, subclass): | |
# Define file path and read content | |
file_path = 'data for product description.txt' | |
with open(file_path, 'r', encoding='utf-8') as file: | |
file_content = file.read() | |
prompt = f""" | |
[Data] | |
{file_content} | |
Role: You are a product description content writer with 10 years of experience in the market. Generate a product description for a {subclass} in the {category} category based on the [Data] provided. | |
Follow the [Instructions] strictly: | |
[Instructions] | |
- Create a detailed product description for a {subclass} in the {category} category based on the [Data]. | |
- Use the structured format below, making each section clear and concise. | |
- Highlight key product features, technical specifications, and the target audience. | |
""" | |
generated_texts = llama_model.generate( | |
inputs=llama_tokenizer(prompt, return_tensors="pt").input_ids.to(device), | |
max_length=7000, | |
max_new_tokens=2000, | |
do_sample=True, | |
temperature=0.7, | |
top_k=50, | |
top_p=0.95, | |
) | |
description = llama_tokenizer.decode(generated_texts[0], skip_special_tokens=True) | |
# Clean up resources | |
torch.cuda.empty_cache() | |
gc.collect() | |
return description | |
# # Generate product description using LLaMA | |
# def generate_description(category, subclass): | |
# prompt = f"Generate a detailed and engaging product description for a {category} of type {subclass}." | |
# inputs = llama_tokenizer.encode(prompt, return_tensors="pt").to(device) | |
# outputs = llama_model.generate(inputs, max_length=100, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) | |
# description = llama_tokenizer.decode(outputs[0], skip_special_tokens=True) | |
# return description | |
def classify_image(image): | |
# Open the image using PIL | |
image = Image.fromarray(image) | |
# Preprocess the image | |
input_image = preprocess(image).unsqueeze(0).to(device) | |
# Perform inference with the main classifier | |
with torch.no_grad(): | |
output = main_model(input_image) | |
probabilities = torch.nn.functional.softmax(output[0], dim=0) | |
confidence, predicted_class = torch.max(probabilities, 0) | |
# Main classifier result | |
main_prediction = main_class_names[predicted_class] | |
main_confidence = confidence.item() | |
if main_confidence <=0.90: | |
main_prediction = 'Others' | |
main_confidence = 100-main_confidence | |
sub_prediction = "Undefined" | |
sub_confidence = -100 | |
description = None | |
# Load and apply the sub-classifier based on the main classification | |
if main_prediction in ['Clothing', 'Mobile Phones', 'Soda drinks']: | |
if main_prediction == 'Soda drinks': | |
soda_model = load_soda_drinks_model() | |
sub_class_names = ['Miranda', 'Pepsi', 'Seven Up'] | |
with torch.no_grad(): | |
sub_output = soda_model(input_image) | |
elif main_prediction == 'Clothing': | |
clothing_model = load_clothing_model() | |
sub_class_names = ['Pants', 'T-Shirt','others'] | |
with torch.no_grad(): | |
sub_output = clothing_model(input_image) | |
elif main_prediction == 'Mobile Phones': | |
phones_model = load_mobile_phones_model() | |
sub_class_names = ['Apple', 'Samsung'] | |
with torch.no_grad(): | |
sub_output = phones_model(input_image) | |
# Perform inference with the sub-classifier | |
sub_probabilities = torch.nn.functional.softmax(sub_output[0], dim=0) | |
sub_confidence, sub_predicted_class = torch.max(sub_probabilities, 0) | |
sub_prediction = sub_class_names[sub_predicted_class] | |
sub_confidence = sub_confidence.item() | |
if sub_confidence < 0.90 : | |
sub_prediction = "Others" | |
sub_confidence = 100- sub_confidence | |
description=None | |
else: | |
# Generate product description | |
description = generate_description(main_prediction, sub_prediction) | |
return f"Main Predicted Class: {main_prediction} (Confidence: {main_confidence:.4f})", \ | |
f"Sub Predicted Class: {sub_prediction} (Confidence: {sub_confidence:.4f})", \ | |
f"Product Description: {description}" | |
# Gradio interface (updated) | |
image_input = gr.Image(image_mode="RGB") # Removed shape argument | |
output_text = gr.Textbox() | |
gr.Interface(fn=classify_image, inputs=image_input, outputs=[output_text], | |
title="Main and Sub-Classifier System product description ", | |
description="Upload an image to classify whether it belongs to Clothing, Mobile Phones, or Soda Drinks. Based on the prediction, it will further classify within the subcategory and generate a detailed product description .", | |
theme="default").launch() |