Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,7 +1,9 @@
|
|
| 1 |
# ==========================================================
|
| 2 |
-
# Stable Diffusion v1-4 — CPU
|
| 3 |
-
#
|
| 4 |
-
#
|
|
|
|
|
|
|
| 5 |
# ==========================================================
|
| 6 |
|
| 7 |
import gradio as gr
|
|
@@ -20,7 +22,7 @@ warnings.filterwarnings("ignore")
|
|
| 20 |
|
| 21 |
DEVICE = "cpu"
|
| 22 |
|
| 23 |
-
#
|
| 24 |
torch.backends.mkldnn.enabled = False
|
| 25 |
|
| 26 |
MODEL_ID = "CompVis/stable-diffusion-v1-4"
|
|
@@ -31,27 +33,26 @@ PIPE_CACHE = None
|
|
| 31 |
# ------------------- LOAD SD MODEL -------------------
|
| 32 |
|
| 33 |
def get_pipe():
|
|
|
|
|
|
|
|
|
|
|
|
|
| 34 |
global PIPE_CACHE
|
| 35 |
-
if PIPE_CACHE:
|
| 36 |
return PIPE_CACHE
|
| 37 |
|
| 38 |
pipe = StableDiffusionPipeline.from_pretrained(
|
| 39 |
MODEL_ID,
|
| 40 |
torch_dtype=torch.float32,
|
| 41 |
-
|
|
|
|
| 42 |
)
|
| 43 |
|
| 44 |
-
#
|
| 45 |
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
|
| 46 |
|
| 47 |
pipe.to(DEVICE)
|
| 48 |
|
| 49 |
-
# VERY IMPORTANT: disable safety checker to avoid weird errors on CPU
|
| 50 |
-
pipe.safety_checker = lambda images, clip_input: (images, False)
|
| 51 |
-
|
| 52 |
-
# Disable features not needed
|
| 53 |
-
pipe.enable_attention_slicing(None)
|
| 54 |
-
|
| 55 |
PIPE_CACHE = pipe
|
| 56 |
return PIPE_CACHE
|
| 57 |
|
|
@@ -59,6 +60,12 @@ def get_pipe():
|
|
| 59 |
# ------------------- PCA + NORM -------------------
|
| 60 |
|
| 61 |
def compute_pca(latents):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 62 |
flat = [x.flatten() for x in latents]
|
| 63 |
X = np.stack(flat)
|
| 64 |
if X.shape[0] < 2:
|
|
@@ -67,17 +74,25 @@ def compute_pca(latents):
|
|
| 67 |
pca = PCA(n_components=2)
|
| 68 |
pts = pca.fit_transform(X)
|
| 69 |
return pts
|
| 70 |
-
except:
|
| 71 |
return np.zeros((X.shape[0], 2))
|
| 72 |
|
| 73 |
|
| 74 |
def compute_norm(latents):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 75 |
return [float(np.linalg.norm(x.flatten())) for x in latents]
|
| 76 |
|
| 77 |
|
| 78 |
# ------------------- LATENT DECODER -------------------
|
| 79 |
|
| 80 |
def decode_latent(pipe, latent_np):
|
|
|
|
|
|
|
|
|
|
| 81 |
latent = torch.from_numpy(latent_np).unsqueeze(0).to(DEVICE)
|
| 82 |
scale = pipe.vae.config.scaling_factor
|
| 83 |
with torch.no_grad():
|
|
@@ -87,135 +102,286 @@ def decode_latent(pipe, latent_np):
|
|
| 87 |
return Image.fromarray(np_img)
|
| 88 |
|
| 89 |
|
| 90 |
-
# -------------------
|
| 91 |
|
| 92 |
def run_diffusion(prompt, steps, guidance, seed, simple):
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 96 |
|
| 97 |
pipe = get_pipe()
|
| 98 |
|
| 99 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 100 |
|
| 101 |
latents_list = []
|
| 102 |
timesteps = []
|
| 103 |
|
| 104 |
-
def
|
|
|
|
| 105 |
latents_list.append(latents.detach().cpu().numpy()[0])
|
| 106 |
-
timesteps.append(int(
|
| 107 |
|
| 108 |
t0 = time.time()
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 120 |
|
| 121 |
total = time.time() - t0
|
| 122 |
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 126 |
norms = compute_norm(latents_list)
|
| 127 |
|
| 128 |
-
|
| 129 |
-
step_image = decode_latent(pipe, latents_list[cur])
|
| 130 |
-
|
| 131 |
-
explanation = (
|
| 132 |
-
"🧒 **Simple Explanation**\n"
|
| 133 |
-
"The model starts with noise, slowly removes it, and reveals an image.\n"
|
| 134 |
-
if simple else
|
| 135 |
-
"🔬 **Technical Explanation**\n"
|
| 136 |
-
"We collect latents at each DDIM step, decode them via VAE, and visualize their PCA path."
|
| 137 |
-
)
|
| 138 |
-
explanation += f"\n⏱ Runtime: {total:.2f}s"
|
| 139 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 140 |
state = {
|
| 141 |
"latents": latents_list,
|
| 142 |
-
"pca":
|
| 143 |
"norms": norms
|
| 144 |
}
|
| 145 |
|
|
|
|
|
|
|
| 146 |
return (
|
| 147 |
-
|
| 148 |
explanation,
|
| 149 |
-
|
| 150 |
step_image,
|
| 151 |
-
|
| 152 |
-
|
| 153 |
state
|
| 154 |
)
|
| 155 |
|
| 156 |
|
| 157 |
-
# ------------------- PLOT
|
| 158 |
|
| 159 |
def plot_pca(points, idx):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 160 |
fig = go.Figure()
|
| 161 |
-
fig.add_trace(go.Scatter(x=points[:,0], y=points[:,1], mode="lines+markers"))
|
| 162 |
fig.add_trace(go.Scatter(
|
| 163 |
-
x=
|
| 164 |
-
|
|
|
|
|
|
|
|
|
|
| 165 |
))
|
| 166 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 167 |
return fig
|
| 168 |
|
|
|
|
| 169 |
def plot_norm(norms, idx):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 170 |
fig = go.Figure()
|
| 171 |
-
fig.add_trace(go.Scatter(y=norms, mode="lines+markers"))
|
| 172 |
fig.add_trace(go.Scatter(
|
| 173 |
-
x=
|
|
|
|
|
|
|
|
|
|
| 174 |
))
|
| 175 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 176 |
return fig
|
| 177 |
|
| 178 |
|
| 179 |
# ------------------- SLIDER UPDATE -------------------
|
| 180 |
|
| 181 |
def update_step(state, idx):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 182 |
latents = state["latents"]
|
| 183 |
-
|
| 184 |
norms = state["norms"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 185 |
pipe = get_pipe()
|
| 186 |
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
)
|
|
|
|
| 193 |
|
|
|
|
| 194 |
|
| 195 |
-
# ------------------- UI -------------------
|
| 196 |
|
| 197 |
-
|
|
|
|
|
|
|
| 198 |
|
| 199 |
gr.Markdown("# 🧠 Stable Diffusion v1-4 — CPU Visualizer (256×256)")
|
| 200 |
-
gr.Markdown(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 201 |
|
| 202 |
with gr.Row():
|
| 203 |
with gr.Column():
|
| 204 |
-
prompt = gr.Textbox(
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 210 |
|
| 211 |
with gr.Column():
|
| 212 |
-
final = gr.Image(label="Final
|
| 213 |
-
expl = gr.Markdown()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 214 |
|
| 215 |
-
step_slider = gr.Slider(0, 0, value=0, step=1, label="View Step")
|
| 216 |
-
step_img = gr.Image(label="Latent Image at Step")
|
| 217 |
-
pca_plot = gr.Plot(label="PCA")
|
| 218 |
-
norm_plot = gr.Plot(label="Norm Plot")
|
| 219 |
state = gr.State()
|
| 220 |
|
| 221 |
run.click(
|
|
@@ -224,6 +390,10 @@ with gr.Blocks(title="SD v1-4 CPU Diffusion Visualizer") as demo:
|
|
| 224 |
outputs=[final, expl, step_slider, step_img, pca_plot, norm_plot, state]
|
| 225 |
)
|
| 226 |
|
| 227 |
-
step_slider.change(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 228 |
|
| 229 |
-
demo.launch()
|
|
|
|
| 1 |
# ==========================================================
|
| 2 |
+
# Stable Diffusion v1-4 — CPU Diffusion Visualizer (256x256)
|
| 3 |
+
# - Runs on HF CPU
|
| 4 |
+
# - Real images (not blurry)
|
| 5 |
+
# - Step-by-step latents
|
| 6 |
+
# - PCA trajectory + latent norm plots
|
| 7 |
# ==========================================================
|
| 8 |
|
| 9 |
import gradio as gr
|
|
|
|
| 22 |
|
| 23 |
DEVICE = "cpu"
|
| 24 |
|
| 25 |
+
# Sometimes MKLDNN causes weird matmul errors with SD on some CPUs, disable to be safe.
|
| 26 |
torch.backends.mkldnn.enabled = False
|
| 27 |
|
| 28 |
MODEL_ID = "CompVis/stable-diffusion-v1-4"
|
|
|
|
| 33 |
# ------------------- LOAD SD MODEL -------------------
|
| 34 |
|
| 35 |
def get_pipe():
|
| 36 |
+
"""
|
| 37 |
+
Load and cache the Stable Diffusion v1-4 pipeline on CPU,
|
| 38 |
+
with safety checker DISABLED correctly.
|
| 39 |
+
"""
|
| 40 |
global PIPE_CACHE
|
| 41 |
+
if PIPE_CACHE is not None:
|
| 42 |
return PIPE_CACHE
|
| 43 |
|
| 44 |
pipe = StableDiffusionPipeline.from_pretrained(
|
| 45 |
MODEL_ID,
|
| 46 |
torch_dtype=torch.float32,
|
| 47 |
+
safety_checker=None, # <--- disable safety checker properly
|
| 48 |
+
requires_safety_checker=False
|
| 49 |
)
|
| 50 |
|
| 51 |
+
# Use DDIM so we have clear, predictable timesteps for visualization
|
| 52 |
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
|
| 53 |
|
| 54 |
pipe.to(DEVICE)
|
| 55 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 56 |
PIPE_CACHE = pipe
|
| 57 |
return PIPE_CACHE
|
| 58 |
|
|
|
|
| 60 |
# ------------------- PCA + NORM -------------------
|
| 61 |
|
| 62 |
def compute_pca(latents):
|
| 63 |
+
"""
|
| 64 |
+
latents: list of (C,H,W) numpy arrays.
|
| 65 |
+
Returns Nx2 array of PCA coords (one point per step).
|
| 66 |
+
"""
|
| 67 |
+
if not latents:
|
| 68 |
+
return np.zeros((0, 2))
|
| 69 |
flat = [x.flatten() for x in latents]
|
| 70 |
X = np.stack(flat)
|
| 71 |
if X.shape[0] < 2:
|
|
|
|
| 74 |
pca = PCA(n_components=2)
|
| 75 |
pts = pca.fit_transform(X)
|
| 76 |
return pts
|
| 77 |
+
except Exception:
|
| 78 |
return np.zeros((X.shape[0], 2))
|
| 79 |
|
| 80 |
|
| 81 |
def compute_norm(latents):
|
| 82 |
+
"""
|
| 83 |
+
L2 norm of each latent over all dims.
|
| 84 |
+
"""
|
| 85 |
+
if not latents:
|
| 86 |
+
return []
|
| 87 |
return [float(np.linalg.norm(x.flatten())) for x in latents]
|
| 88 |
|
| 89 |
|
| 90 |
# ------------------- LATENT DECODER -------------------
|
| 91 |
|
| 92 |
def decode_latent(pipe, latent_np):
|
| 93 |
+
"""
|
| 94 |
+
Decode a single latent (C,H,W) numpy array into a 256x256 RGB PIL image.
|
| 95 |
+
"""
|
| 96 |
latent = torch.from_numpy(latent_np).unsqueeze(0).to(DEVICE)
|
| 97 |
scale = pipe.vae.config.scaling_factor
|
| 98 |
with torch.no_grad():
|
|
|
|
| 102 |
return Image.fromarray(np_img)
|
| 103 |
|
| 104 |
|
| 105 |
+
# ------------------- MAIN DIFFUSION RUN -------------------
|
| 106 |
|
| 107 |
def run_diffusion(prompt, steps, guidance, seed, simple):
|
| 108 |
+
"""
|
| 109 |
+
Run SD v1-4 at 256x256, capturing latents at EVERY step via callback.
|
| 110 |
+
Returns:
|
| 111 |
+
- final image
|
| 112 |
+
- explanation text
|
| 113 |
+
- step slider config
|
| 114 |
+
- image at current step
|
| 115 |
+
- PCA plot
|
| 116 |
+
- norm plot
|
| 117 |
+
- state dict (for slider updates)
|
| 118 |
+
"""
|
| 119 |
+
|
| 120 |
+
if not prompt or not prompt.strip():
|
| 121 |
+
return (
|
| 122 |
+
None,
|
| 123 |
+
"⚠️ Please enter a prompt.",
|
| 124 |
+
gr.update(maximum=0, value=0),
|
| 125 |
+
None,
|
| 126 |
+
None,
|
| 127 |
+
None,
|
| 128 |
+
{}
|
| 129 |
+
)
|
| 130 |
|
| 131 |
pipe = get_pipe()
|
| 132 |
|
| 133 |
+
steps = int(steps)
|
| 134 |
+
guidance = float(guidance)
|
| 135 |
+
|
| 136 |
+
if seed is None or seed < 0:
|
| 137 |
+
seed_val = int(time.time())
|
| 138 |
+
else:
|
| 139 |
+
seed_val = int(seed)
|
| 140 |
+
|
| 141 |
+
generator = torch.Generator(device=DEVICE).manual_seed(seed_val)
|
| 142 |
|
| 143 |
latents_list = []
|
| 144 |
timesteps = []
|
| 145 |
|
| 146 |
+
def callback(step: int, timestep: int, latents: torch.FloatTensor):
|
| 147 |
+
# latents shape: (batch, C, H, W)
|
| 148 |
latents_list.append(latents.detach().cpu().numpy()[0])
|
| 149 |
+
timesteps.append(int(timestep))
|
| 150 |
|
| 151 |
t0 = time.time()
|
| 152 |
+
try:
|
| 153 |
+
result = pipe(
|
| 154 |
+
prompt,
|
| 155 |
+
height=256,
|
| 156 |
+
width=256,
|
| 157 |
+
num_inference_steps=steps,
|
| 158 |
+
guidance_scale=guidance,
|
| 159 |
+
generator=generator,
|
| 160 |
+
callback=callback,
|
| 161 |
+
callback_steps=1,
|
| 162 |
+
)
|
| 163 |
+
except Exception as e:
|
| 164 |
+
return (
|
| 165 |
+
None,
|
| 166 |
+
f"❌ Diffusion error: {e}",
|
| 167 |
+
gr.update(maximum=0, value=0),
|
| 168 |
+
None,
|
| 169 |
+
None,
|
| 170 |
+
None,
|
| 171 |
+
{"error": str(e)}
|
| 172 |
+
)
|
| 173 |
|
| 174 |
total = time.time() - t0
|
| 175 |
|
| 176 |
+
if not latents_list:
|
| 177 |
+
return (
|
| 178 |
+
None,
|
| 179 |
+
"❌ No latents collected. Something went wrong inside the pipeline.",
|
| 180 |
+
gr.update(maximum=0, value=0),
|
| 181 |
+
None,
|
| 182 |
+
None,
|
| 183 |
+
None,
|
| 184 |
+
{"error": "no_latents"}
|
| 185 |
+
)
|
| 186 |
+
|
| 187 |
+
final_image = result.images[0] # PIL
|
| 188 |
+
|
| 189 |
+
# Compute PCA trajectory and norms
|
| 190 |
+
pca_pts = compute_pca(latents_list)
|
| 191 |
norms = compute_norm(latents_list)
|
| 192 |
|
| 193 |
+
current_idx = len(latents_list) - 1 # final step
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 194 |
|
| 195 |
+
# Decode image at current step
|
| 196 |
+
try:
|
| 197 |
+
step_image = decode_latent(pipe, latents_list[current_idx])
|
| 198 |
+
except Exception:
|
| 199 |
+
step_image = None
|
| 200 |
+
|
| 201 |
+
# Explanation text
|
| 202 |
+
if simple:
|
| 203 |
+
explanation = (
|
| 204 |
+
"🧒 **Simple explanation of what you see:**\n\n"
|
| 205 |
+
"1. The model starts from pure noise.\n"
|
| 206 |
+
"2. At each step, it removes some noise and makes the picture clearer.\n"
|
| 207 |
+
"3. Your text prompt tells it what kind of picture to create.\n"
|
| 208 |
+
"4. You can move the slider to see the image at different steps.\n"
|
| 209 |
+
)
|
| 210 |
+
else:
|
| 211 |
+
explanation = (
|
| 212 |
+
"🔬 **Technical explanation:**\n\n"
|
| 213 |
+
"- We run a DDIM diffusion process over the latent space.\n"
|
| 214 |
+
"- At each timestep `t`, the UNet predicts noise εₜ and the scheduler updates `zₜ → zₜ₋₁`.\n"
|
| 215 |
+
"- We record `zₜ` at every step and decode it with the VAE.\n"
|
| 216 |
+
"- PCA over flattened latents gives a 2D trajectory of the diffusion path.\n"
|
| 217 |
+
"- The L2 norm plot shows how the latent magnitude evolves per step.\n"
|
| 218 |
+
)
|
| 219 |
+
explanation += f"\n⏱ **Runtime:** {total:.2f}s • **Steps:** {len(latents_list)} • Seed: {seed_val}"
|
| 220 |
+
|
| 221 |
+
# Build plots
|
| 222 |
+
pca_fig = plot_pca(pca_pts, current_idx) if len(pca_pts) > 0 else None
|
| 223 |
+
norm_fig = plot_norm(norms, current_idx) if norms else None
|
| 224 |
+
|
| 225 |
+
# State for slider updates
|
| 226 |
state = {
|
| 227 |
"latents": latents_list,
|
| 228 |
+
"pca": pca_pts,
|
| 229 |
"norms": norms
|
| 230 |
}
|
| 231 |
|
| 232 |
+
step_slider_update = gr.update(maximum=len(latents_list) - 1, value=current_idx)
|
| 233 |
+
|
| 234 |
return (
|
| 235 |
+
final_image,
|
| 236 |
explanation,
|
| 237 |
+
step_slider_update,
|
| 238 |
step_image,
|
| 239 |
+
pca_fig,
|
| 240 |
+
norm_fig,
|
| 241 |
state
|
| 242 |
)
|
| 243 |
|
| 244 |
|
| 245 |
+
# ------------------- PLOT HELPERS -------------------
|
| 246 |
|
| 247 |
def plot_pca(points, idx):
|
| 248 |
+
"""
|
| 249 |
+
PCA trajectory plot over steps, highlighting current step.
|
| 250 |
+
points: (N,2)
|
| 251 |
+
"""
|
| 252 |
+
if points.shape[0] == 0:
|
| 253 |
+
return None
|
| 254 |
+
|
| 255 |
+
steps = list(range(points.shape[0]))
|
| 256 |
fig = go.Figure()
|
|
|
|
| 257 |
fig.add_trace(go.Scatter(
|
| 258 |
+
x=points[:, 0],
|
| 259 |
+
y=points[:, 1],
|
| 260 |
+
mode="lines+markers",
|
| 261 |
+
name="steps",
|
| 262 |
+
text=[f"step {i}" for i in steps]
|
| 263 |
))
|
| 264 |
+
if 0 <= idx < len(steps):
|
| 265 |
+
fig.add_trace(go.Scatter(
|
| 266 |
+
x=[points[idx, 0]],
|
| 267 |
+
y=[points[idx, 1]],
|
| 268 |
+
mode="markers+text",
|
| 269 |
+
text=[f"step {idx}"],
|
| 270 |
+
textposition="top center",
|
| 271 |
+
marker=dict(size=12, color="red"),
|
| 272 |
+
name="current"
|
| 273 |
+
))
|
| 274 |
+
fig.update_layout(
|
| 275 |
+
title="Latent PCA trajectory",
|
| 276 |
+
xaxis_title="PC1",
|
| 277 |
+
yaxis_title="PC2",
|
| 278 |
+
height=350
|
| 279 |
+
)
|
| 280 |
return fig
|
| 281 |
|
| 282 |
+
|
| 283 |
def plot_norm(norms, idx):
|
| 284 |
+
"""
|
| 285 |
+
Plot latent L2 norm vs step, highlight current step.
|
| 286 |
+
"""
|
| 287 |
+
if not norms:
|
| 288 |
+
return None
|
| 289 |
+
steps = list(range(len(norms)))
|
| 290 |
fig = go.Figure()
|
|
|
|
| 291 |
fig.add_trace(go.Scatter(
|
| 292 |
+
x=steps,
|
| 293 |
+
y=norms,
|
| 294 |
+
mode="lines+markers",
|
| 295 |
+
name="‖latent‖₂"
|
| 296 |
))
|
| 297 |
+
if 0 <= idx < len(steps):
|
| 298 |
+
fig.add_trace(go.Scatter(
|
| 299 |
+
x=[idx],
|
| 300 |
+
y=[norms[idx]],
|
| 301 |
+
mode="markers",
|
| 302 |
+
marker=dict(size=12, color="red"),
|
| 303 |
+
name="current"
|
| 304 |
+
))
|
| 305 |
+
fig.update_layout(
|
| 306 |
+
title="Latent L2 norm vs step",
|
| 307 |
+
xaxis_title="Step index",
|
| 308 |
+
yaxis_title="‖latent‖₂",
|
| 309 |
+
height=350
|
| 310 |
+
)
|
| 311 |
return fig
|
| 312 |
|
| 313 |
|
| 314 |
# ------------------- SLIDER UPDATE -------------------
|
| 315 |
|
| 316 |
def update_step(state, idx):
|
| 317 |
+
"""
|
| 318 |
+
When user moves the slider:
|
| 319 |
+
- decode latent at that step
|
| 320 |
+
- update PCA highlight
|
| 321 |
+
- update norm highlight
|
| 322 |
+
"""
|
| 323 |
+
if not state or "latents" not in state:
|
| 324 |
+
return gr.update(value=None), gr.update(value=None), gr.update(value=None)
|
| 325 |
+
|
| 326 |
latents = state["latents"]
|
| 327 |
+
pca_pts = state["pca"]
|
| 328 |
norms = state["norms"]
|
| 329 |
+
|
| 330 |
+
if not latents:
|
| 331 |
+
return gr.update(value=None), gr.update(value=None), gr.update(value=None)
|
| 332 |
+
|
| 333 |
+
idx = int(idx)
|
| 334 |
+
idx = max(0, min(idx, len(latents) - 1))
|
| 335 |
+
|
| 336 |
pipe = get_pipe()
|
| 337 |
|
| 338 |
+
try:
|
| 339 |
+
img = decode_latent(pipe, latents[idx])
|
| 340 |
+
except Exception:
|
| 341 |
+
img = None
|
| 342 |
+
|
| 343 |
+
pca_fig = plot_pca(pca_pts, idx) if pca_pts is not None else None
|
| 344 |
+
norm_fig = plot_norm(norms, idx) if norms else None
|
| 345 |
|
| 346 |
+
return gr.update(value=img), gr.update(value=pca_fig), gr.update(value=norm_fig)
|
| 347 |
|
|
|
|
| 348 |
|
| 349 |
+
# ------------------- GRADIO UI -------------------
|
| 350 |
+
|
| 351 |
+
with gr.Blocks(title="Stable Diffusion v1-4 — CPU Diffusion Visualizer") as demo:
|
| 352 |
|
| 353 |
gr.Markdown("# 🧠 Stable Diffusion v1-4 — CPU Visualizer (256×256)")
|
| 354 |
+
gr.Markdown(
|
| 355 |
+
"This app shows **how a real Stable Diffusion model** turns noise into an image, step by step.\n"
|
| 356 |
+
"- Uses `CompVis/stable-diffusion-v1-4` on CPU\n"
|
| 357 |
+
"- 256×256 resolution for speed\n"
|
| 358 |
+
"- You can scrub through all diffusion steps\n"
|
| 359 |
+
)
|
| 360 |
|
| 361 |
with gr.Row():
|
| 362 |
with gr.Column():
|
| 363 |
+
prompt = gr.Textbox(
|
| 364 |
+
label="Prompt",
|
| 365 |
+
value="a small cozy cabin in the forest, digital art",
|
| 366 |
+
lines=3
|
| 367 |
+
)
|
| 368 |
+
steps = gr.Slider(10, 30, value=20, step=1, label="Number of diffusion steps")
|
| 369 |
+
guidance = gr.Slider(1.0, 12.0, value=7.5, step=0.5, label="Guidance scale")
|
| 370 |
+
seed = gr.Number(label="Seed (-1 for random)", value=-1, precision=0)
|
| 371 |
+
simple = gr.Checkbox(label="Simple explanation", value=True)
|
| 372 |
+
run = gr.Button("Run diffusion", variant="primary")
|
| 373 |
|
| 374 |
with gr.Column():
|
| 375 |
+
final = gr.Image(label="Final generated image")
|
| 376 |
+
expl = gr.Markdown(label="Explanation")
|
| 377 |
+
|
| 378 |
+
gr.Markdown("### 🔍 Explore the denoising process step-by-step")
|
| 379 |
+
|
| 380 |
+
step_slider = gr.Slider(0, 0, value=0, step=1, label="View step (0 = early noise, max = final)")
|
| 381 |
+
step_img = gr.Image(label="Image at this diffusion step")
|
| 382 |
+
pca_plot = gr.Plot(label="Latent PCA trajectory")
|
| 383 |
+
norm_plot = gr.Plot(label="Latent norm vs step")
|
| 384 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 385 |
state = gr.State()
|
| 386 |
|
| 387 |
run.click(
|
|
|
|
| 390 |
outputs=[final, expl, step_slider, step_img, pca_plot, norm_plot, state]
|
| 391 |
)
|
| 392 |
|
| 393 |
+
step_slider.change(
|
| 394 |
+
update_step,
|
| 395 |
+
inputs=[state, step_slider],
|
| 396 |
+
outputs=[step_img, pca_plot, norm_plot]
|
| 397 |
+
)
|
| 398 |
|
| 399 |
+
demo.launch()
|