Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,388 +1,229 @@
|
|
| 1 |
-
#
|
| 2 |
-
#
|
| 3 |
-
#
|
|
|
|
|
|
|
| 4 |
|
| 5 |
import gradio as gr
|
| 6 |
import torch
|
| 7 |
import numpy as np
|
| 8 |
-
from diffusers import
|
| 9 |
from sklearn.decomposition import PCA
|
| 10 |
import plotly.graph_objects as go
|
| 11 |
-
import plotly.express as px
|
| 12 |
from PIL import Image
|
| 13 |
import time
|
|
|
|
| 14 |
|
| 15 |
-
|
| 16 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
|
| 18 |
PIPE_CACHE = None
|
| 19 |
|
| 20 |
|
| 21 |
-
#
|
| 22 |
|
| 23 |
def get_pipe():
|
| 24 |
-
"""Lazy-load and cache the tiny Stable Diffusion pipeline."""
|
| 25 |
global PIPE_CACHE
|
| 26 |
-
if PIPE_CACHE
|
| 27 |
return PIPE_CACHE
|
| 28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
pipe.to(DEVICE)
|
| 30 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 31 |
PIPE_CACHE = pipe
|
| 32 |
return PIPE_CACHE
|
| 33 |
|
| 34 |
|
| 35 |
-
#
|
| 36 |
|
| 37 |
-
def
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
vae = pipe.vae
|
| 43 |
-
latent = torch.from_numpy(latent_np).unsqueeze(0).to(DEVICE)
|
| 44 |
-
# scaling_factor is used in SD-style VAEs; fallback to standard SD value
|
| 45 |
-
scale = getattr(vae.config, "scaling_factor", 0.18215)
|
| 46 |
-
with torch.no_grad():
|
| 47 |
-
image = vae.decode(latent / scale).sample
|
| 48 |
-
image = (image / 2 + 0.5).clamp(0, 1)
|
| 49 |
-
image = image[0].permute(1, 2, 0).cpu().numpy()
|
| 50 |
-
image = (image * 255).astype("uint8")
|
| 51 |
-
return Image.fromarray(image)
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
def compute_pca_over_steps(latents_list):
|
| 55 |
-
"""
|
| 56 |
-
latents_list: list of (C,H,W) numpy arrays.
|
| 57 |
-
Flatten each into a single vector; run PCA across steps.
|
| 58 |
-
Returns (S,2) array of 2D coords.
|
| 59 |
-
"""
|
| 60 |
-
if len(latents_list) == 0:
|
| 61 |
-
return None
|
| 62 |
-
flat = [x.reshape(-1) for x in latents_list]
|
| 63 |
-
mat = np.stack(flat, axis=0) # (steps, dim)
|
| 64 |
-
if mat.shape[0] < 2 or mat.shape[1] < 2:
|
| 65 |
-
# Not enough data for PCA; return zeros
|
| 66 |
-
return np.zeros((mat.shape[0], 2))
|
| 67 |
try:
|
| 68 |
pca = PCA(n_components=2)
|
| 69 |
-
pts = pca.fit_transform(
|
| 70 |
return pts
|
| 71 |
-
except
|
| 72 |
-
return np.zeros((
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
def compute_norms_over_steps(latents_list):
|
| 76 |
-
"""Compute L2 norm of each latent across channels & spatial dims."""
|
| 77 |
-
if len(latents_list) == 0:
|
| 78 |
-
return []
|
| 79 |
-
flat = [x.reshape(-1) for x in latents_list]
|
| 80 |
-
norms = [float(np.linalg.norm(v)) for v in flat]
|
| 81 |
-
return norms
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
def explain(simple=True):
|
| 85 |
-
if simple:
|
| 86 |
-
return (
|
| 87 |
-
"🧒 **Simple explanation of what you see:**\n\n"
|
| 88 |
-
"1. The model starts with a totally noisy image.\n"
|
| 89 |
-
"2. Step by step, it removes noise and shapes the picture.\n"
|
| 90 |
-
"3. Your words (the prompt) tell it *what* to draw.\n"
|
| 91 |
-
"4. The slider lets you move through these steps:\n"
|
| 92 |
-
" - Early steps = mostly noise\n"
|
| 93 |
-
" - Later steps = clearer image\n"
|
| 94 |
-
)
|
| 95 |
-
else:
|
| 96 |
-
return (
|
| 97 |
-
"🔬 **Technical explanation:**\n\n"
|
| 98 |
-
"- We use a tiny Stable Diffusion-style pipeline.\n"
|
| 99 |
-
"- At each timestep `t`, the UNet predicts noise εₜ for latent `zₜ`.\n"
|
| 100 |
-
"- The scheduler updates `zₜ → zₜ₋₁` using εₜ.\n"
|
| 101 |
-
"- We record the latent after each step and decode it with the VAE.\n"
|
| 102 |
-
"- PCA over flattened latents shows the trajectory in latent space.\n"
|
| 103 |
-
"- Latent norm vs step shows how the magnitude evolves during denoising.\n"
|
| 104 |
-
)
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
def make_pca_figure(points, current_idx):
|
| 108 |
-
"""Make a PCA trajectory plot over steps, highlighting the selected step."""
|
| 109 |
-
steps = list(range(len(points)))
|
| 110 |
-
fig = go.Figure()
|
| 111 |
-
fig.add_trace(go.Scatter(
|
| 112 |
-
x=points[:, 0],
|
| 113 |
-
y=points[:, 1],
|
| 114 |
-
mode="lines+markers",
|
| 115 |
-
name="Steps",
|
| 116 |
-
text=[f"step {i}" for i in steps]
|
| 117 |
-
))
|
| 118 |
-
if 0 <= current_idx < len(points):
|
| 119 |
-
fig.add_trace(go.Scatter(
|
| 120 |
-
x=[points[current_idx, 0]],
|
| 121 |
-
y=[points[current_idx, 1]],
|
| 122 |
-
mode="markers+text",
|
| 123 |
-
text=[f"step {current_idx}"],
|
| 124 |
-
textposition="top center",
|
| 125 |
-
marker=dict(size=14, color="red"),
|
| 126 |
-
name="Current step"
|
| 127 |
-
))
|
| 128 |
-
fig.update_layout(
|
| 129 |
-
title="Latent PCA trajectory over steps",
|
| 130 |
-
xaxis_title="PC1",
|
| 131 |
-
yaxis_title="PC2",
|
| 132 |
-
height=400
|
| 133 |
-
)
|
| 134 |
-
return fig
|
| 135 |
|
| 136 |
|
| 137 |
-
def
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
)
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
))
|
| 155 |
-
fig.update_layout(
|
| 156 |
-
title="Latent L2 norm vs diffusion step",
|
| 157 |
-
xaxis_title="Step index (0 = most noisy)",
|
| 158 |
-
yaxis_title="‖latent‖₂",
|
| 159 |
-
height=400
|
| 160 |
-
)
|
| 161 |
-
return fig
|
| 162 |
|
|
|
|
| 163 |
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
def run_diffusion_analysis(prompt, num_steps, guidance, seed, simple_mode):
|
| 167 |
-
"""
|
| 168 |
-
Run the tiny diffusion pipeline, recording latents at each step.
|
| 169 |
-
Returns Gradio updates + a state dict.
|
| 170 |
-
"""
|
| 171 |
-
if not prompt or not prompt.strip():
|
| 172 |
-
return (
|
| 173 |
-
None, # final image
|
| 174 |
-
f"⚠️ Please enter a prompt.",
|
| 175 |
-
gr.update(maximum=0, value=0),
|
| 176 |
-
None, None, None,
|
| 177 |
-
{
|
| 178 |
-
"error": "no_prompt"
|
| 179 |
-
}
|
| 180 |
-
)
|
| 181 |
|
| 182 |
pipe = get_pipe()
|
| 183 |
-
num_steps = int(num_steps)
|
| 184 |
-
guidance = float(guidance)
|
| 185 |
|
| 186 |
-
|
| 187 |
-
if seed is None or seed < 0:
|
| 188 |
-
generator = torch.Generator(device=DEVICE)
|
| 189 |
-
else:
|
| 190 |
-
generator = torch.Generator(device=DEVICE).manual_seed(int(seed))
|
| 191 |
|
| 192 |
latents_list = []
|
| 193 |
-
|
| 194 |
|
| 195 |
-
def
|
| 196 |
-
# latents: (batch, C, H, W)
|
| 197 |
latents_list.append(latents.detach().cpu().numpy()[0])
|
| 198 |
-
|
| 199 |
|
| 200 |
t0 = time.time()
|
| 201 |
-
try:
|
| 202 |
-
result = pipe(
|
| 203 |
-
prompt,
|
| 204 |
-
num_inference_steps=num_steps,
|
| 205 |
-
guidance_scale=guidance,
|
| 206 |
-
generator=generator,
|
| 207 |
-
callback=callback,
|
| 208 |
-
callback_steps=1,
|
| 209 |
-
)
|
| 210 |
-
except Exception as e:
|
| 211 |
-
return (
|
| 212 |
-
None,
|
| 213 |
-
f"❌ Model / diffusion error: {e}",
|
| 214 |
-
gr.update(maximum=0, value=0),
|
| 215 |
-
None, None, None,
|
| 216 |
-
{
|
| 217 |
-
"error": "diffusion_error",
|
| 218 |
-
"details": str(e)
|
| 219 |
-
}
|
| 220 |
-
)
|
| 221 |
-
|
| 222 |
-
elapsed = time.time() - t0
|
| 223 |
-
|
| 224 |
-
if len(latents_list) == 0:
|
| 225 |
-
return (
|
| 226 |
-
None,
|
| 227 |
-
"❌ No latents were collected. Something went wrong inside the pipeline.",
|
| 228 |
-
gr.update(maximum=0, value=0),
|
| 229 |
-
None, None, None,
|
| 230 |
-
{
|
| 231 |
-
"error": "no_latents"
|
| 232 |
-
}
|
| 233 |
-
)
|
| 234 |
-
|
| 235 |
-
final_image = result.images[0] # PIL
|
| 236 |
-
|
| 237 |
-
# Compute PCA and norms over steps
|
| 238 |
-
pca_points = compute_pca_over_steps(latents_list)
|
| 239 |
-
norms = compute_norms_over_steps(latents_list)
|
| 240 |
-
|
| 241 |
-
# Default step: last (most denoised)
|
| 242 |
-
current_idx = len(latents_list) - 1
|
| 243 |
-
|
| 244 |
-
# Decode image for current step
|
| 245 |
-
try:
|
| 246 |
-
step_image = decode_latent_to_pil(pipe, latents_list[current_idx])
|
| 247 |
-
except Exception:
|
| 248 |
-
step_image = None
|
| 249 |
|
| 250 |
-
|
| 251 |
-
|
| 252 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 253 |
|
| 254 |
-
|
| 255 |
-
|
| 256 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 257 |
|
| 258 |
-
# State dict to keep everything for slider updates
|
| 259 |
state = {
|
| 260 |
-
"prompt": prompt,
|
| 261 |
-
"num_steps": num_steps,
|
| 262 |
-
"guidance": guidance,
|
| 263 |
-
"seed": seed,
|
| 264 |
"latents": latents_list,
|
| 265 |
-
"
|
| 266 |
-
"pca_points": pca_points,
|
| 267 |
"norms": norms
|
| 268 |
}
|
| 269 |
|
| 270 |
-
step_slider_update = gr.update(maximum=len(latents_list)-1, value=current_idx)
|
| 271 |
-
|
| 272 |
return (
|
| 273 |
-
|
| 274 |
explanation,
|
| 275 |
-
|
| 276 |
step_image,
|
| 277 |
-
|
| 278 |
-
|
| 279 |
state
|
| 280 |
)
|
| 281 |
|
| 282 |
|
| 283 |
-
|
| 284 |
-
"""
|
| 285 |
-
When the user moves the step slider, update:
|
| 286 |
-
- the decoded image at that step
|
| 287 |
-
- the PCA plot (highlight current)
|
| 288 |
-
- the norm plot (highlight current)
|
| 289 |
-
"""
|
| 290 |
-
if not state or "latents" not in state:
|
| 291 |
-
return gr.update(value=None), gr.update(value=None), gr.update(value=None)
|
| 292 |
-
|
| 293 |
-
latents_list = state["latents"]
|
| 294 |
-
pca_points = state["pca_points"]
|
| 295 |
-
norms = state["norms"]
|
| 296 |
-
|
| 297 |
-
if len(latents_list) == 0:
|
| 298 |
-
return gr.update(value=None), gr.update(value=None), gr.update(value=None)
|
| 299 |
|
| 300 |
-
|
| 301 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 302 |
|
| 303 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 304 |
|
| 305 |
-
# Decode image at this step
|
| 306 |
-
try:
|
| 307 |
-
step_image = decode_latent_to_pil(pipe, latents_list[step_idx])
|
| 308 |
-
except Exception:
|
| 309 |
-
step_image = None
|
| 310 |
|
| 311 |
-
|
| 312 |
-
pca_fig = make_pca_figure(pca_points, step_idx) if pca_points is not None else None
|
| 313 |
-
norm_fig = make_norm_figure(norms, step_idx) if norms else None
|
| 314 |
|
| 315 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 316 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 317 |
|
| 318 |
-
# -------------------- GRADIO UI -------------------- #
|
| 319 |
|
| 320 |
-
|
| 321 |
|
| 322 |
-
|
| 323 |
-
gr.Markdown(
|
| 324 |
-
"See how a tiny Stable Diffusion model turns **pure noise** into an image "
|
| 325 |
-
"step by step. Use the slider to move through the diffusion process."
|
| 326 |
-
)
|
| 327 |
|
| 328 |
-
|
| 329 |
-
|
| 330 |
-
prompt_box = gr.Textbox(
|
| 331 |
-
label="Prompt",
|
| 332 |
-
value="a small house in the forest, digital art",
|
| 333 |
-
lines=3
|
| 334 |
-
)
|
| 335 |
-
num_steps_slider = gr.Slider(
|
| 336 |
-
minimum=5, maximum=50, value=20, step=1,
|
| 337 |
-
label="Number of diffusion steps"
|
| 338 |
-
)
|
| 339 |
-
guidance_slider = gr.Slider(
|
| 340 |
-
minimum=1.0, maximum=10.0, value=7.5, step=0.5,
|
| 341 |
-
label="Guidance scale (higher = follow prompt more)"
|
| 342 |
-
)
|
| 343 |
-
seed_box = gr.Number(
|
| 344 |
-
label="Seed (leave -1 for random)",
|
| 345 |
-
value=-1,
|
| 346 |
-
precision=0
|
| 347 |
-
)
|
| 348 |
-
simple_mode_chk = gr.Checkbox(
|
| 349 |
-
label="Explain in simple terms (for kids/elders)",
|
| 350 |
-
value=True
|
| 351 |
-
)
|
| 352 |
-
run_btn = gr.Button("Generate & Analyze", variant="primary")
|
| 353 |
-
|
| 354 |
-
with gr.Column(scale=2):
|
| 355 |
-
final_image = gr.Image(label="Final generated image")
|
| 356 |
-
explanation_md = gr.Markdown(label="Explanation")
|
| 357 |
-
|
| 358 |
-
gr.Markdown("### 🔍 Explore the denoising process")
|
| 359 |
-
step_slider = gr.Slider(
|
| 360 |
-
minimum=0, maximum=0, value=0, step=1,
|
| 361 |
-
label="View step (0 = early, noisy • max = late, clear)"
|
| 362 |
-
)
|
| 363 |
|
| 364 |
with gr.Row():
|
| 365 |
with gr.Column():
|
| 366 |
-
|
| 367 |
-
|
| 368 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 369 |
with gr.Column():
|
| 370 |
-
|
|
|
|
| 371 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 372 |
state = gr.State()
|
| 373 |
|
| 374 |
-
|
| 375 |
-
|
| 376 |
-
|
| 377 |
-
|
| 378 |
-
outputs=[final_image, explanation_md, step_slider, step_image, pca_plot, norm_plot, state]
|
| 379 |
)
|
| 380 |
|
| 381 |
-
|
| 382 |
-
step_slider.change(
|
| 383 |
-
update_step_view,
|
| 384 |
-
inputs=[state, step_slider],
|
| 385 |
-
outputs=[step_image, pca_plot, norm_plot]
|
| 386 |
-
)
|
| 387 |
|
| 388 |
demo.launch()
|
|
|
|
| 1 |
+
# ==========================================================
|
| 2 |
+
# Stable Diffusion v1-4 — CPU Optimized Diffusion Visualizer
|
| 3 |
+
# REAL images (256×256) on free HuggingFace CPU
|
| 4 |
+
# With: step-by-step latents, PCA path, norm plot, latents decode
|
| 5 |
+
# ==========================================================
|
| 6 |
|
| 7 |
import gradio as gr
|
| 8 |
import torch
|
| 9 |
import numpy as np
|
| 10 |
+
from diffusers import StableDiffusionPipeline, DDIMScheduler
|
| 11 |
from sklearn.decomposition import PCA
|
| 12 |
import plotly.graph_objects as go
|
|
|
|
| 13 |
from PIL import Image
|
| 14 |
import time
|
| 15 |
+
import warnings
|
| 16 |
|
| 17 |
+
warnings.filterwarnings("ignore")
|
| 18 |
+
|
| 19 |
+
# ------------------- CPU SETTINGS -------------------
|
| 20 |
+
|
| 21 |
+
DEVICE = "cpu"
|
| 22 |
+
|
| 23 |
+
# Disable MKLDNN for safety (prevents matmul errors on SD)
|
| 24 |
+
torch.backends.mkldnn.enabled = False
|
| 25 |
+
|
| 26 |
+
MODEL_ID = "CompVis/stable-diffusion-v1-4"
|
| 27 |
|
| 28 |
PIPE_CACHE = None
|
| 29 |
|
| 30 |
|
| 31 |
+
# ------------------- LOAD SD MODEL -------------------
|
| 32 |
|
| 33 |
def get_pipe():
|
|
|
|
| 34 |
global PIPE_CACHE
|
| 35 |
+
if PIPE_CACHE:
|
| 36 |
return PIPE_CACHE
|
| 37 |
+
|
| 38 |
+
pipe = StableDiffusionPipeline.from_pretrained(
|
| 39 |
+
MODEL_ID,
|
| 40 |
+
torch_dtype=torch.float32,
|
| 41 |
+
low_cpu_mem_usage=True,
|
| 42 |
+
)
|
| 43 |
+
|
| 44 |
+
# Replace scheduler with DDIM (better for stepping)
|
| 45 |
+
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
|
| 46 |
+
|
| 47 |
pipe.to(DEVICE)
|
| 48 |
+
|
| 49 |
+
# VERY IMPORTANT: disable safety checker to avoid weird errors on CPU
|
| 50 |
+
pipe.safety_checker = lambda images, clip_input: (images, False)
|
| 51 |
+
|
| 52 |
+
# Disable features not needed
|
| 53 |
+
pipe.enable_attention_slicing(None)
|
| 54 |
+
|
| 55 |
PIPE_CACHE = pipe
|
| 56 |
return PIPE_CACHE
|
| 57 |
|
| 58 |
|
| 59 |
+
# ------------------- PCA + NORM -------------------
|
| 60 |
|
| 61 |
+
def compute_pca(latents):
|
| 62 |
+
flat = [x.flatten() for x in latents]
|
| 63 |
+
X = np.stack(flat)
|
| 64 |
+
if X.shape[0] < 2:
|
| 65 |
+
return np.zeros((X.shape[0], 2))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 66 |
try:
|
| 67 |
pca = PCA(n_components=2)
|
| 68 |
+
pts = pca.fit_transform(X)
|
| 69 |
return pts
|
| 70 |
+
except:
|
| 71 |
+
return np.zeros((X.shape[0], 2))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 72 |
|
| 73 |
|
| 74 |
+
def compute_norm(latents):
|
| 75 |
+
return [float(np.linalg.norm(x.flatten())) for x in latents]
|
| 76 |
+
|
| 77 |
+
|
| 78 |
+
# ------------------- LATENT DECODER -------------------
|
| 79 |
+
|
| 80 |
+
def decode_latent(pipe, latent_np):
|
| 81 |
+
latent = torch.from_numpy(latent_np).unsqueeze(0).to(DEVICE)
|
| 82 |
+
scale = pipe.vae.config.scaling_factor
|
| 83 |
+
with torch.no_grad():
|
| 84 |
+
image = pipe.vae.decode(latent / scale).sample
|
| 85 |
+
image = (image / 2 + 0.5).clamp(0, 1)
|
| 86 |
+
np_img = (image[0].permute(1, 2, 0).cpu().numpy() * 255).astype("uint8")
|
| 87 |
+
return Image.fromarray(np_img)
|
| 88 |
+
|
| 89 |
+
|
| 90 |
+
# ------------------- RUN DIFFUSION -------------------
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 91 |
|
| 92 |
+
def run_diffusion(prompt, steps, guidance, seed, simple):
|
| 93 |
|
| 94 |
+
if not prompt.strip():
|
| 95 |
+
return None, "Enter prompt", gr.update(), None, None, None, {}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 96 |
|
| 97 |
pipe = get_pipe()
|
|
|
|
|
|
|
| 98 |
|
| 99 |
+
generator = torch.Generator("cpu").manual_seed(seed if seed >= 0 else int(time.time()))
|
|
|
|
|
|
|
|
|
|
|
|
|
| 100 |
|
| 101 |
latents_list = []
|
| 102 |
+
timesteps = []
|
| 103 |
|
| 104 |
+
def cb(step, t, latents):
|
|
|
|
| 105 |
latents_list.append(latents.detach().cpu().numpy()[0])
|
| 106 |
+
timesteps.append(int(t))
|
| 107 |
|
| 108 |
t0 = time.time()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 109 |
|
| 110 |
+
result = pipe(
|
| 111 |
+
prompt,
|
| 112 |
+
height=256,
|
| 113 |
+
width=256,
|
| 114 |
+
num_inference_steps=steps,
|
| 115 |
+
guidance_scale=guidance,
|
| 116 |
+
generator=generator,
|
| 117 |
+
callback=cb,
|
| 118 |
+
callback_steps=1,
|
| 119 |
+
)
|
| 120 |
+
|
| 121 |
+
total = time.time() - t0
|
| 122 |
|
| 123 |
+
final = result.images[0]
|
| 124 |
+
|
| 125 |
+
pca = compute_pca(latents_list)
|
| 126 |
+
norms = compute_norm(latents_list)
|
| 127 |
+
|
| 128 |
+
cur = len(latents_list) - 1
|
| 129 |
+
step_image = decode_latent(pipe, latents_list[cur])
|
| 130 |
+
|
| 131 |
+
explanation = (
|
| 132 |
+
"🧒 **Simple Explanation**\n"
|
| 133 |
+
"The model starts with noise, slowly removes it, and reveals an image.\n"
|
| 134 |
+
if simple else
|
| 135 |
+
"🔬 **Technical Explanation**\n"
|
| 136 |
+
"We collect latents at each DDIM step, decode them via VAE, and visualize their PCA path."
|
| 137 |
+
)
|
| 138 |
+
explanation += f"\n⏱ Runtime: {total:.2f}s"
|
| 139 |
|
|
|
|
| 140 |
state = {
|
|
|
|
|
|
|
|
|
|
|
|
|
| 141 |
"latents": latents_list,
|
| 142 |
+
"pca": pca,
|
|
|
|
| 143 |
"norms": norms
|
| 144 |
}
|
| 145 |
|
|
|
|
|
|
|
| 146 |
return (
|
| 147 |
+
final,
|
| 148 |
explanation,
|
| 149 |
+
gr.update(maximum=len(latents_list)-1, value=cur),
|
| 150 |
step_image,
|
| 151 |
+
plot_pca(pca, cur),
|
| 152 |
+
plot_norm(norms, cur),
|
| 153 |
state
|
| 154 |
)
|
| 155 |
|
| 156 |
|
| 157 |
+
# ------------------- PLOT FUNCTIONS -------------------
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 158 |
|
| 159 |
+
def plot_pca(points, idx):
|
| 160 |
+
fig = go.Figure()
|
| 161 |
+
fig.add_trace(go.Scatter(x=points[:,0], y=points[:,1], mode="lines+markers"))
|
| 162 |
+
fig.add_trace(go.Scatter(
|
| 163 |
+
x=[points[idx,0]], y=[points[idx,1]],
|
| 164 |
+
mode="markers", marker=dict(size=12, color="red")
|
| 165 |
+
))
|
| 166 |
+
fig.update_layout(height=350, title="PCA Trajectory")
|
| 167 |
+
return fig
|
| 168 |
|
| 169 |
+
def plot_norm(norms, idx):
|
| 170 |
+
fig = go.Figure()
|
| 171 |
+
fig.add_trace(go.Scatter(y=norms, mode="lines+markers"))
|
| 172 |
+
fig.add_trace(go.Scatter(
|
| 173 |
+
x=[idx], y=[norms[idx]], mode="markers", marker=dict(size=12, color="red")
|
| 174 |
+
))
|
| 175 |
+
fig.update_layout(height=350, title="Latent Norm Over Steps")
|
| 176 |
+
return fig
|
| 177 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 178 |
|
| 179 |
+
# ------------------- SLIDER UPDATE -------------------
|
|
|
|
|
|
|
| 180 |
|
| 181 |
+
def update_step(state, idx):
|
| 182 |
+
latents = state["latents"]
|
| 183 |
+
pca = state["pca"]
|
| 184 |
+
norms = state["norms"]
|
| 185 |
+
pipe = get_pipe()
|
| 186 |
|
| 187 |
+
img = decode_latent(pipe, latents[idx])
|
| 188 |
+
return (
|
| 189 |
+
img,
|
| 190 |
+
plot_pca(pca, idx),
|
| 191 |
+
plot_norm(norms, idx)
|
| 192 |
+
)
|
| 193 |
|
|
|
|
| 194 |
|
| 195 |
+
# ------------------- UI -------------------
|
| 196 |
|
| 197 |
+
with gr.Blocks(title="SD v1-4 CPU Diffusion Visualizer") as demo:
|
|
|
|
|
|
|
|
|
|
|
|
|
| 198 |
|
| 199 |
+
gr.Markdown("# 🧠 Stable Diffusion v1-4 — CPU Visualizer (256×256)")
|
| 200 |
+
gr.Markdown("This version produces **real images**, optimized for free HF CPU.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 201 |
|
| 202 |
with gr.Row():
|
| 203 |
with gr.Column():
|
| 204 |
+
prompt = gr.Textbox(label="Prompt", value="a cute cat in watercolor")
|
| 205 |
+
steps = gr.Slider(10, 30, value=20, step=1, label="Steps")
|
| 206 |
+
guidance = gr.Slider(3, 12, value=7.5, step=0.5, label="Guidance")
|
| 207 |
+
seed = gr.Number(label="Seed (-1 for random)", value=-1)
|
| 208 |
+
simple = gr.Checkbox(label="Simple Explanation", value=True)
|
| 209 |
+
run = gr.Button("Run Diffusion", variant="primary")
|
| 210 |
+
|
| 211 |
with gr.Column():
|
| 212 |
+
final = gr.Image(label="Final Image")
|
| 213 |
+
expl = gr.Markdown()
|
| 214 |
|
| 215 |
+
step_slider = gr.Slider(0, 0, value=0, step=1, label="View Step")
|
| 216 |
+
step_img = gr.Image(label="Latent Image at Step")
|
| 217 |
+
pca_plot = gr.Plot(label="PCA")
|
| 218 |
+
norm_plot = gr.Plot(label="Norm Plot")
|
| 219 |
state = gr.State()
|
| 220 |
|
| 221 |
+
run.click(
|
| 222 |
+
run_diffusion,
|
| 223 |
+
inputs=[prompt, steps, guidance, seed, simple],
|
| 224 |
+
outputs=[final, expl, step_slider, step_img, pca_plot, norm_plot, state]
|
|
|
|
| 225 |
)
|
| 226 |
|
| 227 |
+
step_slider.change(update_step, [state, step_slider], [step_img, pca_plot, norm_plot])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 228 |
|
| 229 |
demo.launch()
|