Update app.py
Browse files
app.py
CHANGED
@@ -44,7 +44,6 @@ def audio_postprocess(self, y):
|
|
44 |
gr.Audio.postprocess = audio_postprocess
|
45 |
|
46 |
limitation = os.getenv("SYSTEM") == "spaces" # limit text and audio length in huggingface spaces
|
47 |
-
max_len = 150
|
48 |
languages = ['日本語', '简体中文', 'English']
|
49 |
characters = ['0:特别周', '1:无声铃鹿', '2:东海帝王', '3:丸善斯基',
|
50 |
'4:富士奇迹', '5:小栗帽', '6:黄金船', '7:伏特加',
|
@@ -76,14 +75,15 @@ def show_memory_info(hint):
|
|
76 |
print("{} 内存占用: {} MB".format(hint, memory))
|
77 |
|
78 |
|
79 |
-
def get_text(text, hps):
|
80 |
-
text_norm = text_to_sequence(text, hps.symbols, hps.data.text_cleaners)
|
81 |
if hps.data.add_blank:
|
82 |
text_norm = commons.intersperse(text_norm, 0)
|
83 |
-
text_norm =
|
84 |
return text_norm
|
85 |
|
86 |
hps = utils.get_hparams_from_file("./configs/uma87.json")
|
|
|
87 |
net_g = ONNXVITS_infer.SynthesizerTrn(
|
88 |
len(hps.symbols),
|
89 |
hps.data.filter_length // 2 + 1,
|
@@ -94,7 +94,11 @@ _ = net_g.eval()
|
|
94 |
|
95 |
_ = utils.load_checkpoint("pretrained_models/G_1153000.pth", net_g)
|
96 |
|
97 |
-
def
|
|
|
|
|
|
|
|
|
98 |
# check character & duraction parameter
|
99 |
if language not in languages:
|
100 |
print("Error: No such language\n")
|
@@ -104,28 +108,33 @@ def infer(text_raw, character, language, duration, noise_scale, noise_scale_w):
|
|
104 |
return "Error: No such character", None
|
105 |
# check text length
|
106 |
if limitation:
|
107 |
-
text_len = len(re.sub("\[([A-Z]{2})\]", "", text_raw))
|
|
|
|
|
|
|
108 |
if text_len > max_len:
|
109 |
print(f"Refused: Text too long ({text_len}).")
|
110 |
return "Error: Text is too long", None
|
111 |
if text_len == 0:
|
112 |
print("Refused: Text length is zero.")
|
113 |
return "Error: Please input text!", None
|
114 |
-
if
|
|
|
|
|
115 |
text = text_raw
|
116 |
elif language == '简体中文':
|
117 |
text = tss.google(text_raw, from_language='zh', to_language='ja')
|
118 |
elif language == 'English':
|
119 |
text = tss.google(text_raw, from_language='en', to_language='ja')
|
120 |
char_id = int(character.split(':')[0])
|
121 |
-
stn_tst = get_text(text, hps)
|
122 |
with torch.no_grad():
|
123 |
x_tst = stn_tst.unsqueeze(0)
|
124 |
x_tst_lengths = torch.LongTensor([stn_tst.size(0)])
|
125 |
-
sid = torch.LongTensor([
|
126 |
audio = net_g.infer(x_tst, x_tst_lengths, sid=sid, noise_scale=noise_scale, noise_scale_w=noise_scale_w, length_scale=duration)[0][0,0].data.float().numpy()
|
127 |
currentDateAndTime = datetime.now()
|
128 |
-
print(f"
|
129 |
if language != '日本語':
|
130 |
print(f"translate from {language}: {text_raw}")
|
131 |
show_memory_info(str(currentDateAndTime) + " infer调用后")
|
@@ -171,7 +180,37 @@ if __name__ == "__main__":
|
|
171 |
with gr.Row():
|
172 |
with gr.Column():
|
173 |
# We instantiate the Textbox class
|
174 |
-
textbox = gr.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
175 |
# select character
|
176 |
char_dropdown = gr.Dropdown(choices=characters, value = "0:特别周", label='character')
|
177 |
language_dropdown = gr.Dropdown(choices=languages, value = "日本語", label='language')
|
@@ -180,6 +219,9 @@ if __name__ == "__main__":
|
|
180 |
duration_slider = gr.Slider(minimum=0.1, maximum=5, value=1, step=0.1, label='时长 Duration')
|
181 |
noise_scale_slider = gr.Slider(minimum=0.1, maximum=5, value=0.667, step=0.001, label='噪声比例 noise_scale')
|
182 |
noise_scale_w_slider = gr.Slider(minimum=0.1, maximum=5, value=0.8, step=0.1, label='噪声偏差 noise_scale_w')
|
|
|
|
|
|
|
183 |
with gr.Column():
|
184 |
text_output = gr.Textbox(label="Output Text")
|
185 |
audio_output = gr.Audio(label="Output Audio", elem_id="tts-audio")
|
@@ -187,22 +229,24 @@ if __name__ == "__main__":
|
|
187 |
download.click(None, [], [], _js=download_audio_js.format(audio_id="tts-audio"))
|
188 |
btn = gr.Button("Generate!")
|
189 |
btn.click(infer, inputs=[textbox, char_dropdown, language_dropdown,
|
190 |
-
duration_slider, noise_scale_slider, noise_scale_w_slider],
|
191 |
outputs=[text_output, audio_output])
|
192 |
-
examples = [['お疲れ様です,トレーナーさん。', '1:无声铃鹿', '日本語', 1, 0.667, 0.8],
|
193 |
-
['張り切っていこう!', '67:北部玄驹', '日本語', 1, 0.667, 0.8],
|
194 |
-
['何でこんなに慣れでんのよ,私のほが先に好きだっだのに。', '10:草上飞', '日本語', 1, 0.667, 0.8],
|
195 |
-
['授業中に出しだら,学校生活終わるですわ。', '12:目白麦昆', '日本語', 1, 0.667, 0.8],
|
196 |
-
['お帰りなさい,お兄様!', '29:米浴', '日本語', 1, 0.667, 0.8],
|
197 |
-
['私の処女をもらっでください!', '29:米浴', '日本語', 1, 0.667, 0.8]]
|
198 |
gr.Examples(
|
199 |
examples=examples,
|
200 |
inputs=[textbox, char_dropdown, language_dropdown,
|
201 |
-
duration_slider, noise_scale_slider,noise_scale_w_slider],
|
202 |
outputs=[text_output, audio_output],
|
203 |
fn=infer
|
204 |
)
|
205 |
gr.Markdown("# Updates Logs 更新日志:\n\n"
|
|
|
|
|
206 |
"2023/1/10:\n\n"
|
207 |
"数据集已上传,您可以在[这里](https://huggingface.co/datasets/Plachta/Umamusume-voice-text-pairs/tree/main)下载。\n\n"
|
208 |
"2023/1/9:\n\n"
|
|
|
44 |
gr.Audio.postprocess = audio_postprocess
|
45 |
|
46 |
limitation = os.getenv("SYSTEM") == "spaces" # limit text and audio length in huggingface spaces
|
|
|
47 |
languages = ['日本語', '简体中文', 'English']
|
48 |
characters = ['0:特别周', '1:无声铃鹿', '2:东海帝王', '3:丸善斯基',
|
49 |
'4:富士奇迹', '5:小栗帽', '6:黄金船', '7:伏特加',
|
|
|
75 |
print("{} 内存占用: {} MB".format(hint, memory))
|
76 |
|
77 |
|
78 |
+
def get_text(text, hps, is_symbol):
|
79 |
+
text_norm = text_to_sequence(text, hps.symbols, [] if is_symbol else hps.data.text_cleaners)
|
80 |
if hps.data.add_blank:
|
81 |
text_norm = commons.intersperse(text_norm, 0)
|
82 |
+
text_norm = LongTensor(text_norm)
|
83 |
return text_norm
|
84 |
|
85 |
hps = utils.get_hparams_from_file("./configs/uma87.json")
|
86 |
+
symbols = hps.symbols
|
87 |
net_g = ONNXVITS_infer.SynthesizerTrn(
|
88 |
len(hps.symbols),
|
89 |
hps.data.filter_length // 2 + 1,
|
|
|
94 |
|
95 |
_ = utils.load_checkpoint("pretrained_models/G_1153000.pth", net_g)
|
96 |
|
97 |
+
def to_symbol_fn(is_symbol_input, input_text, temp_text):
|
98 |
+
return (_clean_text(input_text, hps.data.text_cleaners), input_text) if is_symbol_input \
|
99 |
+
else (temp_text, temp_text)
|
100 |
+
|
101 |
+
def infer(text_raw, character, language, duration, noise_scale, noise_scale_w, is_symbol):
|
102 |
# check character & duraction parameter
|
103 |
if language not in languages:
|
104 |
print("Error: No such language\n")
|
|
|
108 |
return "Error: No such character", None
|
109 |
# check text length
|
110 |
if limitation:
|
111 |
+
text_len = len(text_raw) if is_symbol else len(re.sub("\[([A-Z]{2})\]", "", text_raw))
|
112 |
+
max_len = 150
|
113 |
+
if is_symbol:
|
114 |
+
max_len *= 3
|
115 |
if text_len > max_len:
|
116 |
print(f"Refused: Text too long ({text_len}).")
|
117 |
return "Error: Text is too long", None
|
118 |
if text_len == 0:
|
119 |
print("Refused: Text length is zero.")
|
120 |
return "Error: Please input text!", None
|
121 |
+
if is_symbol:
|
122 |
+
text = text_raw
|
123 |
+
elif language == '日本語':
|
124 |
text = text_raw
|
125 |
elif language == '简体中文':
|
126 |
text = tss.google(text_raw, from_language='zh', to_language='ja')
|
127 |
elif language == 'English':
|
128 |
text = tss.google(text_raw, from_language='en', to_language='ja')
|
129 |
char_id = int(character.split(':')[0])
|
130 |
+
stn_tst = get_text(text, hps, is_symbol)
|
131 |
with torch.no_grad():
|
132 |
x_tst = stn_tst.unsqueeze(0)
|
133 |
x_tst_lengths = torch.LongTensor([stn_tst.size(0)])
|
134 |
+
sid = torch.LongTensor([0])
|
135 |
audio = net_g.infer(x_tst, x_tst_lengths, sid=sid, noise_scale=noise_scale, noise_scale_w=noise_scale_w, length_scale=duration)[0][0,0].data.float().numpy()
|
136 |
currentDateAndTime = datetime.now()
|
137 |
+
print(f"Character {character} inference successful: {text}\n")
|
138 |
if language != '日本語':
|
139 |
print(f"translate from {language}: {text_raw}")
|
140 |
show_memory_info(str(currentDateAndTime) + " infer调用后")
|
|
|
180 |
with gr.Row():
|
181 |
with gr.Column():
|
182 |
# We instantiate the Textbox class
|
183 |
+
textbox = gr.TextArea(label="Text", placeholder="Type your sentence here (Maximum 150 words)", value="こんにちわ。", elem_id=f"tts-input")
|
184 |
+
with gr.Accordion(label="Advanced Options", open=False):
|
185 |
+
temp_text_var = gr.Variable()
|
186 |
+
symbol_input = gr.Checkbox(value=False, label="Symbol input")
|
187 |
+
symbol_list = gr.Dataset(label="Symbol list", components=[textbox],
|
188 |
+
samples=[[x] for x in symbols],
|
189 |
+
elem_id=f"symbol-list")
|
190 |
+
symbol_list_json = gr.Json(value=symbols, visible=False)
|
191 |
+
symbol_input.change(to_symbol_fn,
|
192 |
+
[symbol_input, textbox, temp_text_var],
|
193 |
+
[textbox, temp_text_var])
|
194 |
+
symbol_list.click(None, [symbol_list, symbol_list_json], [],
|
195 |
+
_js=f"""
|
196 |
+
(i, symbols) => {{
|
197 |
+
let root = document.querySelector("body > gradio-app");
|
198 |
+
if (root.shadowRoot != null)
|
199 |
+
root = root.shadowRoot;
|
200 |
+
let text_input = root.querySelector("#tts-input").querySelector("textarea");
|
201 |
+
let startPos = text_input.selectionStart;
|
202 |
+
let endPos = text_input.selectionEnd;
|
203 |
+
let oldTxt = text_input.value;
|
204 |
+
let result = oldTxt.substring(0, startPos) + symbols[i] + oldTxt.substring(endPos);
|
205 |
+
text_input.value = result;
|
206 |
+
let x = window.scrollX, y = window.scrollY;
|
207 |
+
text_input.focus();
|
208 |
+
text_input.selectionStart = startPos + symbols[i].length;
|
209 |
+
text_input.selectionEnd = startPos + symbols[i].length;
|
210 |
+
text_input.blur();
|
211 |
+
window.scrollTo(x, y);
|
212 |
+
return [];
|
213 |
+
}}""")
|
214 |
# select character
|
215 |
char_dropdown = gr.Dropdown(choices=characters, value = "0:特别周", label='character')
|
216 |
language_dropdown = gr.Dropdown(choices=languages, value = "日本語", label='language')
|
|
|
219 |
duration_slider = gr.Slider(minimum=0.1, maximum=5, value=1, step=0.1, label='时长 Duration')
|
220 |
noise_scale_slider = gr.Slider(minimum=0.1, maximum=5, value=0.667, step=0.001, label='噪声比例 noise_scale')
|
221 |
noise_scale_w_slider = gr.Slider(minimum=0.1, maximum=5, value=0.8, step=0.1, label='噪声偏差 noise_scale_w')
|
222 |
+
|
223 |
+
|
224 |
+
|
225 |
with gr.Column():
|
226 |
text_output = gr.Textbox(label="Output Text")
|
227 |
audio_output = gr.Audio(label="Output Audio", elem_id="tts-audio")
|
|
|
229 |
download.click(None, [], [], _js=download_audio_js.format(audio_id="tts-audio"))
|
230 |
btn = gr.Button("Generate!")
|
231 |
btn.click(infer, inputs=[textbox, char_dropdown, language_dropdown,
|
232 |
+
duration_slider, noise_scale_slider, noise_scale_w_slider, symbol_input],
|
233 |
outputs=[text_output, audio_output])
|
234 |
+
examples = [['お疲れ様です,トレーナーさん。', '1:无声铃鹿', '日本語', 1, 0.667, 0.8, False],
|
235 |
+
['張り切っていこう!', '67:北部玄驹', '日本語', 1, 0.667, 0.8, False],
|
236 |
+
['何でこんなに慣れでんのよ,私のほが先に好きだっだのに。', '10:草上飞', '日本語', 1, 0.667, 0.8, False],
|
237 |
+
['授業中に出しだら,学校生活終わるですわ。', '12:目白麦昆', '日本語', 1, 0.667, 0.8, False],
|
238 |
+
['お帰りなさい,お兄様!', '29:米浴', '日本語', 1, 0.667, 0.8, False],
|
239 |
+
['私の処女をもらっでください!', '29:米浴', '日本語', 1, 0.667, 0.8, False]]
|
240 |
gr.Examples(
|
241 |
examples=examples,
|
242 |
inputs=[textbox, char_dropdown, language_dropdown,
|
243 |
+
duration_slider, noise_scale_slider,noise_scale_w_slider, symbol_input],
|
244 |
outputs=[text_output, audio_output],
|
245 |
fn=infer
|
246 |
)
|
247 |
gr.Markdown("# Updates Logs 更新日志:\n\n"
|
248 |
+
"2023/1/12:\n\n"
|
249 |
+
"增加了音素输入的功能,可以对语气和语调做到一定程度的精细控制。"
|
250 |
"2023/1/10:\n\n"
|
251 |
"数据集已上传,您可以在[这里](https://huggingface.co/datasets/Plachta/Umamusume-voice-text-pairs/tree/main)下载。\n\n"
|
252 |
"2023/1/9:\n\n"
|