|
import argparse |
|
import json |
|
import os |
|
import re |
|
import tempfile |
|
import logging |
|
logging.getLogger('numba').setLevel(logging.WARNING) |
|
import ONNXVITS_infer |
|
import librosa |
|
import numpy as np |
|
import torch |
|
from torch import no_grad, LongTensor |
|
import commons |
|
import utils |
|
import gradio as gr |
|
import gradio.utils as gr_utils |
|
import gradio.processing_utils as gr_processing_utils |
|
from models import SynthesizerTrn |
|
from text import text_to_sequence, _clean_text |
|
from text.symbols import symbols |
|
from mel_processing import spectrogram_torch |
|
import translators.server as tss |
|
import psutil |
|
from datetime import datetime |
|
from text.cleaners import japanese_cleaners |
|
|
|
def audio_postprocess(self, y): |
|
if y is None: |
|
return None |
|
|
|
if gr_utils.validate_url(y): |
|
file = gr_processing_utils.download_to_file(y, dir=self.temp_dir) |
|
elif isinstance(y, tuple): |
|
sample_rate, data = y |
|
file = tempfile.NamedTemporaryFile( |
|
suffix=".wav", dir=self.temp_dir, delete=False |
|
) |
|
gr_processing_utils.audio_to_file(sample_rate, data, file.name) |
|
else: |
|
file = gr_processing_utils.create_tmp_copy_of_file(y, dir=self.temp_dir) |
|
|
|
return gr_processing_utils.encode_url_or_file_to_base64(file.name) |
|
|
|
|
|
gr.Audio.postprocess = audio_postprocess |
|
|
|
limitation = os.getenv("SYSTEM") == "spaces" |
|
languages = ['日本語', '简体中文', 'English'] |
|
characters = ['0:特别周', '1:无声铃鹿', '2:东海帝王', '3:丸善斯基', |
|
'4:富士奇迹', '5:小栗帽', '6:黄金船', '7:伏特加', |
|
'8:大和赤骥', '9:大树快车', '10:草上飞', '11:菱亚马逊', |
|
'12:目白麦昆', '13:神鹰', '14:好歌剧', '15:成田白仁', |
|
'16:鲁道夫象征', '17:气槽', '18:爱丽数码', '19:青云天空', |
|
'20:玉藻十字', '21:美妙姿势', '22:琵琶晨光', '23:重炮', |
|
'24:曼城茶座', '25:美普波旁', '26:目白雷恩', '27:菱曙', |
|
'28:雪之美人', '29:米浴', '30:艾尼斯风神', '31:爱丽速子', |
|
'32:爱慕织姬', '33:稻荷一', '34:胜利奖券', '35:空中神宫', |
|
'36:荣进闪耀', '37:真机伶', '38:川上公主', '39:黄金城市', |
|
'40:樱花进王', '41:采珠', '42:新光风', '43:东商变革', |
|
'44:超级小溪', '45:醒目飞鹰', '46:荒漠英雄', '47:东瀛佐敦', |
|
'48:中山庆典', '49:成田大进', '50:西野花', '51:春乌拉拉', |
|
'52:青竹回忆', '53:微光飞驹', '54:美丽周日', '55:待兼福来', |
|
'56:Mr.C.B', '57:名将怒涛', '58:目白多伯', '59:优秀素质', |
|
'60:帝王光环', '61:待兼诗歌剧', '62:生野狄杜斯', '63:目白善信', |
|
'64:大拓太阳神', '65:双涡轮', '66:里见光钻', '67:北部玄驹', |
|
'68:樱花千代王', '69:天狼星象征', '70:目白阿尔丹', '71:八重无敌', |
|
'72:鹤丸刚志', '73:目白光明', '74:樱花桂冠', '75:成田路', |
|
'76:也文摄辉', '77:吉兆', '78:谷野美酒', '79:第一红宝石', |
|
'80:真弓快车', '81:骏川手纲', '82:凯斯奇迹', '83:小林历奇', |
|
'84:北港火山', '85:奇锐骏', '86:秋川理事长'] |
|
def show_memory_info(hint): |
|
pid = os.getpid() |
|
p = psutil.Process(pid) |
|
info = p.memory_info() |
|
memory = info.rss / 1024.0 / 1024 |
|
print("{} 内存占用: {} MB".format(hint, memory)) |
|
|
|
def text_to_phoneme(text, symbols, is_symbol): |
|
_symbol_to_id = {s: i for i, s in enumerate(symbols)} |
|
|
|
sequence = "" |
|
if not is_symbol: |
|
clean_text = japanese_cleaners(text) |
|
else: |
|
clean_text = text |
|
for symbol in clean_text: |
|
if symbol not in _symbol_to_id.keys(): |
|
continue |
|
symbol_id = _symbol_to_id[symbol] |
|
sequence += symbol |
|
return sequence |
|
|
|
def get_text(text, hps, is_symbol): |
|
text_norm = text_to_sequence(text, hps.symbols, [] if is_symbol else hps.data.text_cleaners) |
|
if hps.data.add_blank: |
|
text_norm = commons.intersperse(text_norm, 0) |
|
text_norm = LongTensor(text_norm) |
|
return text_norm |
|
|
|
hps = utils.get_hparams_from_file("./configs/uma87.json") |
|
symbols = hps.symbols |
|
net_g = ONNXVITS_infer.SynthesizerTrn( |
|
len(hps.symbols), |
|
hps.data.filter_length // 2 + 1, |
|
hps.train.segment_size // hps.data.hop_length, |
|
n_speakers=hps.data.n_speakers, |
|
**hps.model) |
|
_ = net_g.eval() |
|
|
|
_ = utils.load_checkpoint("pretrained_models/G_1153000.pth", net_g) |
|
|
|
def to_symbol_fn(is_symbol_input, input_text, temp_text): |
|
return (_clean_text(input_text, hps.data.text_cleaners), input_text) if is_symbol_input \ |
|
else (temp_text, temp_text) |
|
|
|
def infer(text_raw, character, language, duration, noise_scale, noise_scale_w, is_symbol): |
|
|
|
if language not in languages: |
|
print("Error: No such language\n") |
|
return "Error: No such language", None, None, None |
|
if character not in characters: |
|
print("Error: No such character\n") |
|
return "Error: No such character", None, None, None |
|
|
|
if limitation: |
|
text_len = len(text_raw) if is_symbol else len(re.sub("\[([A-Z]{2})\]", "", text_raw)) |
|
max_len = 150 |
|
if is_symbol: |
|
max_len *= 3 |
|
if text_len > max_len: |
|
print(f"Refused: Text too long ({text_len}).") |
|
return "Error: Text is too long", None, None, None |
|
if text_len == 0: |
|
print("Refused: Text length is zero.") |
|
return "Error: Please input text!", None, None, None |
|
if is_symbol: |
|
text = text_raw |
|
elif language == '日本語': |
|
text = text_raw |
|
elif language == '简体中文': |
|
text = tss.google(text_raw, from_language='zh', to_language='ja') |
|
elif language == 'English': |
|
text = tss.google(text_raw, from_language='en', to_language='ja') |
|
char_id = int(character.split(':')[0]) |
|
stn_tst = get_text(text, hps, is_symbol) |
|
with torch.no_grad(): |
|
x_tst = stn_tst.unsqueeze(0) |
|
x_tst_lengths = torch.LongTensor([stn_tst.size(0)]) |
|
sid = torch.LongTensor([char_id]) |
|
try: |
|
jp2phoneme = text_to_phoneme(text, hps.symbols, is_symbol) |
|
durations = net_g.predict_duration(x_tst, x_tst_lengths, sid=sid, noise_scale=noise_scale, |
|
noise_scale_w=noise_scale_w, length_scale=duration) |
|
char_dur_list = [] |
|
for i, char in enumerate(jp2phoneme): |
|
char_pos = i * 2 + 1 |
|
char_dur = durations[char_pos] |
|
char_dur_list.append(char_dur) |
|
except IndexError: |
|
print("Refused: Phoneme input contains non-phoneme character.") |
|
return "Error: You can only input phoneme under phoneme input model", None, None, None |
|
char_spacing_dur_list = [] |
|
char_spacings = [] |
|
for i in range(len(durations)): |
|
if i % 2 == 0: |
|
char_spacings.append("spacing") |
|
elif i % 2 == 1: |
|
char_spacings.append(jp2phoneme[int((i - 1) / 2)]) |
|
char_spacing_dur_list.append(int(durations[i])) |
|
|
|
duration_info_str = "" |
|
for i in range(len(char_spacings)): |
|
if i == len(char_spacings) - 1: |
|
duration_info_str += "(" + str(char_spacing_dur_list[i]) + ")" |
|
elif char_spacings[i] == "spacing": |
|
duration_info_str += "(" + str(char_spacing_dur_list[i]) + ")" + ", " |
|
else: |
|
duration_info_str += char_spacings[i] + ":" + str(char_spacing_dur_list[i]) |
|
audio = net_g.infer(x_tst, x_tst_lengths, sid=sid, noise_scale=noise_scale, noise_scale_w=noise_scale_w, length_scale=duration)[0][0,0].data.float().numpy() |
|
currentDateAndTime = datetime.now() |
|
print(f"\nCharacter {character} inference successful: {text}") |
|
if language != '日本語': |
|
print(f"translate from {language}: {text_raw}") |
|
show_memory_info(str(currentDateAndTime) + " infer调用后") |
|
return (text,(22050, audio), jp2phoneme, duration_info_str) |
|
|
|
def infer_from_phoneme_dur(duration_info_str, character, duration, noise_scale, noise_scale_w): |
|
try: |
|
phonemes = duration_info_str.split(", ") |
|
recons_durs = [] |
|
recons_phonemes = "" |
|
for i, item in enumerate(phonemes): |
|
if i == 0: |
|
recons_durs.append(int(item.strip("()"))) |
|
else: |
|
phoneme_n_dur, spacing_dur = item.split("(") |
|
recons_phonemes += phoneme_n_dur.split(":")[0] |
|
recons_durs.append(int(phoneme_n_dur.split(":")[1])) |
|
recons_durs.append(int(spacing_dur.strip(")"))) |
|
except ValueError: |
|
return ("Error: Format must not be changed!", None) |
|
except AssertionError: |
|
return ("Error: Format must not be changed!", None) |
|
char_id = int(character.split(':')[0]) |
|
stn_tst = get_text(recons_phonemes, hps, is_symbol=True) |
|
with torch.no_grad(): |
|
x_tst = stn_tst.unsqueeze(0) |
|
x_tst_lengths = torch.LongTensor([stn_tst.size(0)]) |
|
sid = torch.LongTensor([char_id]) |
|
audio = net_g.infer_with_duration(x_tst, x_tst_lengths, w_ceil=recons_durs, sid=sid, noise_scale=noise_scale, noise_scale_w=noise_scale_w, |
|
length_scale=duration)[0][0, 0].data.cpu().float().numpy() |
|
print(f"\nCharacter {character} inference successful: {recons_phonemes}, from {duration_info_str}") |
|
return (recons_phonemes, (22050, audio)) |
|
|
|
download_audio_js = """ |
|
() =>{{ |
|
let root = document.querySelector("body > gradio-app"); |
|
if (root.shadowRoot != null) |
|
root = root.shadowRoot; |
|
let audio = root.querySelector("#{audio_id}").querySelector("audio"); |
|
if (audio == undefined) |
|
return; |
|
audio = audio.src; |
|
let oA = document.createElement("a"); |
|
oA.download = Math.floor(Math.random()*100000000)+'.wav'; |
|
oA.href = audio; |
|
document.body.appendChild(oA); |
|
oA.click(); |
|
oA.remove(); |
|
}} |
|
""" |
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument("--share", action="store_true", default=False, help="share gradio app") |
|
args = parser.parse_args() |
|
app = gr.Blocks() |
|
with app: |
|
gr.Markdown("# Umamusume voice synthesizer 赛马娘语音合成器\n\n" |
|
"![visitor badge](https://visitor-badge.glitch.me/badge?page_id=Plachta.VITS-Umamusume-voice-synthesizer)\n\n" |
|
"This synthesizer is created based on [VITS](https://arxiv.org/abs/2106.06103) model, trained on voice data extracted from mobile game Umamusume Pretty Derby \n\n" |
|
"这个合成器是基于VITS文本到语音模型,在从手游《賽馬娘:Pretty Derby》解包的语音数据上训练得到。[Dataset Link](https://huggingface.co/datasets/Plachta/Umamusume-voice-text-pairs/tree/main)\n\n" |
|
"[introduction video / 模型介绍视频](https://www.bilibili.com/video/BV1T84y1e7p5/?vd_source=6d5c00c796eff1cbbe25f1ae722c2f9f#reply607277701)\n\n" |
|
"You may duplicate this space or [open in Colab](https://colab.research.google.com/drive/1J2Vm5dczTF99ckyNLXV0K-hQTxLwEaj5?usp=sharing) to run it privately and without any queue.\n\n" |
|
"您可以复制该空间至私人空间运行或打开[Google Colab](https://colab.research.google.com/drive/1J2Vm5dczTF99ckyNLXV0K-hQTxLwEaj5?usp=sharing)在线运行。\n\n" |
|
"If you have any suggestions or bug reports, feel free to open discussion in [Community](https://huggingface.co/spaces/Plachta/VITS-Umamusume-voice-synthesizer/discussions).\n\n" |
|
"若有bug反馈或建议,请在[Community](https://huggingface.co/spaces/Plachta/VITS-Umamusume-voice-synthesizer/discussions)下开启一个新的Discussion。 \n\n" |
|
"If your input language is not Japanese, it will be translated to Japanese by Google translator, but accuracy is not guaranteed.\n\n" |
|
"如果您的输入语言不是日语,则会由谷歌翻译自动翻译为日语,但是准确性不能保证。\n\n" |
|
) |
|
with gr.Row(): |
|
with gr.Column(): |
|
|
|
textbox = gr.TextArea(label="Text", placeholder="Type your sentence here (Maximum 150 words)", value="こんにちわ。", elem_id=f"tts-input") |
|
with gr.Accordion(label="Phoneme Input", open=False): |
|
temp_text_var = gr.Variable() |
|
symbol_input = gr.Checkbox(value=False, label="Symbol input") |
|
symbol_list = gr.Dataset(label="Symbol list", components=[textbox], |
|
samples=[[x] for x in symbols], |
|
elem_id=f"symbol-list") |
|
symbol_list_json = gr.Json(value=symbols, visible=False) |
|
symbol_input.change(to_symbol_fn, |
|
[symbol_input, textbox, temp_text_var], |
|
[textbox, temp_text_var]) |
|
symbol_list.click(None, [symbol_list, symbol_list_json], [], |
|
_js=f""" |
|
(i, symbols) => {{ |
|
let root = document.querySelector("body > gradio-app"); |
|
if (root.shadowRoot != null) |
|
root = root.shadowRoot; |
|
let text_input = root.querySelector("#tts-input").querySelector("textarea"); |
|
let startPos = text_input.selectionStart; |
|
let endPos = text_input.selectionEnd; |
|
let oldTxt = text_input.value; |
|
let result = oldTxt.substring(0, startPos) + symbols[i] + oldTxt.substring(endPos); |
|
text_input.value = result; |
|
let x = window.scrollX, y = window.scrollY; |
|
text_input.focus(); |
|
text_input.selectionStart = startPos + symbols[i].length; |
|
text_input.selectionEnd = startPos + symbols[i].length; |
|
text_input.blur(); |
|
window.scrollTo(x, y); |
|
return []; |
|
}}""") |
|
|
|
char_dropdown = gr.Dropdown(choices=characters, value = "0:特别周", label='character') |
|
language_dropdown = gr.Dropdown(choices=languages, value = "日本語", label='language') |
|
|
|
|
|
duration_slider = gr.Slider(minimum=0.1, maximum=5, value=1, step=0.1, label='时长 Duration') |
|
noise_scale_slider = gr.Slider(minimum=0.1, maximum=5, value=0.667, step=0.001, label='噪声比例 noise_scale') |
|
noise_scale_w_slider = gr.Slider(minimum=0.1, maximum=5, value=0.8, step=0.1, label='噪声偏差 noise_scale_w') |
|
|
|
|
|
|
|
with gr.Column(): |
|
text_output = gr.Textbox(label="Output Text") |
|
phoneme_output = gr.Textbox(label="Output Phonemes", interactive=False) |
|
audio_output = gr.Audio(label="Output Audio", elem_id="tts-audio") |
|
btn = gr.Button("Generate!") |
|
cus_dur_gn_btn = gr.Button("Regenerate with custom phoneme durations") |
|
|
|
download = gr.Button("Download Audio") |
|
download.click(None, [], [], _js=download_audio_js.format(audio_id="tts-audio")) |
|
with gr.Accordion(label="Speaking Pace Control", open=True): |
|
|
|
duration_output = gr.Textbox(label="Duration of each phoneme", placeholder="After you generate a sentence, the detailed information of each phoneme's duration will be presented here.", |
|
interactive = True) |
|
gr.Markdown( |
|
"The number after the : mark represents the length of each phoneme in the generated audio, while the number inside ( ) represents the lenght of spacing between each phoneme and its next phoneme. " |
|
"You can manually change the numbers to adjust the length of each phoneme, so that speaking pace can be completely controlled. " |
|
"Note that these numbers should be integers only. \n\n(1 represents a length of 0.01161 seconds)\n\n" |
|
"音素冒号后的数字代表音素在生成音频中的长度,( )内的数字代表每个音素与下一个音素之间间隔的长度。" |
|
"您可以手动修改这些数字来控制每个音素以及间隔的长度,从而完全控制合成音频的说话节奏。" |
|
"注意这些数字只能是整数。 \n\n(1 代表 0.01161 秒的长度)\n\n" |
|
) |
|
btn.click(infer, inputs=[textbox, char_dropdown, language_dropdown, duration_slider, noise_scale_slider, noise_scale_w_slider, symbol_input], |
|
outputs=[text_output, audio_output, phoneme_output, duration_output]) |
|
cus_dur_gn_btn.click(infer_from_phoneme_dur, inputs=[duration_output, char_dropdown, duration_slider, noise_scale_slider, noise_scale_w_slider], |
|
outputs=[phoneme_output, audio_output]) |
|
|
|
examples = [['haa\u2193......haa\u2193......haa\u2193......haa\u2193......haa\u2193......haa\u2193......haa\u2193......haa\u2193......haa\u2193......haa\u2193......haa\u2193......haa\u2193......', '29:米浴', '日本語', 1, 0.667, 0.8, True], |
|
['お疲れ様です,トレーナーさん。', '1:无声铃鹿', '日本語', 1, 0.667, 0.8, False], |
|
['張り切っていこう!', '67:北部玄驹', '日本語', 1, 0.667, 0.8, False], |
|
['何でこんなに慣れでんのよ,私のほが先に好きだっだのに。', '10:草上飞', '日本語', 1, 0.667, 0.8, False], |
|
['授業中に出しだら,学校生活終わるですわ。', '12:目白麦昆', '日本語', 1, 0.667, 0.8, False], |
|
['お帰りなさい,お兄様!', '29:米浴', '日本語', 1, 0.667, 0.8, False], |
|
['私の処女をもらっでください!', '29:米浴', '日本語', 1, 0.667, 0.8, False]] |
|
gr.Examples( |
|
examples=examples, |
|
inputs=[textbox, char_dropdown, language_dropdown, |
|
duration_slider, noise_scale_slider,noise_scale_w_slider, symbol_input], |
|
outputs=[text_output, audio_output], |
|
fn=infer |
|
) |
|
gr.Markdown("# Updates Logs 更新日志:\n\n" |
|
"2023/1/24:\n\n" |
|
"Improved the format of phoneme length control.\n\n" |
|
"改善了音素控制的格式。\n\n" |
|
"2023/1/24:\n\n" |
|
"Added more precise control on pace of speaking by modifying the duration of each phoneme.\n\n" |
|
"增加了对说话节奏的音素级控制。\n\n" |
|
"2023/1/13:\n\n" |
|
"Added one example of phoneme input.\n\n" |
|
"增加了音素输入的example(米浴喘气)\n\n" |
|
"2023/1/12:\n\n" |
|
"Added phoneme input, which enables more precise control on output audio.\n\n" |
|
"增加了音素输入的功能,可以对语气和语调做到一定程度的精细控制。\n\n" |
|
"Adjusted UI arrangements.\n\n" |
|
"调整了UI的布局。\n\n" |
|
"2023/1/10:\n\n" |
|
"Dataset used for training is now uploaded to [here](https://huggingface.co/datasets/Plachta/Umamusume-voice-text-pairs/tree/main)\n\n" |
|
"数据集已上传,您可以在[这里](https://huggingface.co/datasets/Plachta/Umamusume-voice-text-pairs/tree/main)下载。\n\n" |
|
"2023/1/9:\n\n" |
|
"Model inference has been fully converted to onnxruntime. There will be no more Runtime Error: Memory Limit Exceeded\n\n" |
|
"模型推理已全面转为onnxruntime,现在不会出现Runtime Error: Memory Limit Exceeded了。\n\n" |
|
"Now integrated to [Moe-tts](https://huggingface.co/spaces/skytnt/moe-tts) collection.\n\n" |
|
"现已加入[Moe-tts](https://huggingface.co/spaces/skytnt/moe-tts)模型大全。\n\n" |
|
) |
|
app.queue(concurrency_count=3).launch(show_api=False, share=args.share) |