Spaces:
Sleeping
Sleeping
import gradio as gr | |
import pixeltable as pxt | |
from pixeltable.iterators import FrameIterator, StringSplitter | |
from pixeltable.functions.video import extract_audio | |
from pixeltable.functions.audio import get_metadata | |
from pixeltable.functions import openai | |
import os | |
import getpass | |
import numpy as np | |
from pixeltable.functions.huggingface import sentence_transformer | |
# Store OpenAI API Key | |
if 'OPENAI_API_KEY' not in os.environ: | |
os.environ['OPENAI_API_KEY'] = getpass.getpass('Enter your OpenAI API key:') | |
MAX_VIDEO_SIZE_MB = 35 | |
def process_video(video_file, progress=gr.Progress()): | |
progress(0, desc="Initializing...") | |
try: | |
# Create a Table, a View, and Computed Columns | |
pxt.drop_dir('gong_demo', force=True) | |
pxt.create_dir('gong_demo') | |
calls_table = pxt.create_table( | |
'gong_demo.calls', { | |
"video": pxt.VideoType(nullable=True), | |
} | |
) | |
# Create computed columns to store transformations and persist outputs | |
calls_table['audio'] = extract_audio(calls_table.video, format='mp3') | |
calls_table['metadata'] = get_metadata(calls_table.audio) | |
calls_table['transcription'] = openai.transcriptions(audio=calls_table.audio, model='whisper-1') | |
calls_table['transcription_text'] = calls_table.transcription.text.astype(pxt.StringType()) | |
sentences_view = pxt.create_view( | |
'gong_demo.sentences', | |
calls_table, | |
iterator=StringSplitter.create( | |
text=calls_table.transcription_text, | |
separators='sentence' | |
) | |
) | |
def e5_embed(text: str) -> np.ndarray: | |
return sentence_transformer(text, model_id='intfloat/e5-large-v2') | |
sentences_view.add_embedding_index('text', string_embed=e5_embed) | |
progress(0.2, desc="Creating UDFs...") | |
# Custom User-Defined Function (UDF) for Generating Insights | |
def generate_insights(transcription: str) -> list[dict]: | |
system_msg = 'You are an AI assistant that analyzes call transcriptions. Analyze the following call transcription and provide insights on: 1. Main topics discussed 2. Action items 3. Sentiment analysis 4. Key questions asked' | |
user_msg = f'Transcription: "{transcription}"' | |
return [ | |
{'role': 'system', 'content': system_msg}, | |
{'role': 'user', 'content': user_msg} | |
] | |
# Apply the UDF to create a new column | |
calls_table['insights_prompt'] = generate_insights(calls_table.transcription_text) | |
progress(0.4, desc="Generating insights...") | |
# Generate insights using OpenAI's chat completion API | |
calls_table['insights_response'] = openai.chat_completions(messages=calls_table.insights_prompt, model='gpt-3.5-turbo', max_tokens=500) | |
# Extract the content of the response | |
calls_table['insights'] = calls_table.insights_response.choices[0].message.content | |
if not video_file: | |
return "Please upload a video file.", "" | |
# Check video file size | |
video_size = os.path.getsize(video_file) / (1024 * 1024) # Convert to MB | |
if video_size > MAX_VIDEO_SIZE_MB: | |
return f"The video file is larger than {MAX_VIDEO_SIZE_MB} MB. Please upload a smaller file.", "" | |
progress(0.6, desc="Processing video...") | |
# Insert a video into the table | |
calls_table.insert([{"video": video_file}]) | |
progress(0.8, desc="Retrieving results...") | |
# Retrieve transcription and insights | |
result = calls_table.select(calls_table.transcription_text, calls_table.insights, calls_table.audio).tail(1) | |
transcription = result['transcription_text'][0] | |
insights = result['insights'][0] | |
audio = calls_table.select(calls_table.audio).tail(1)['audio'][0] | |
progress(1.0, desc="Processing complete") | |
return transcription, insights, audio, "Processing complete" | |
except Exception as e: | |
return f"An error occurred during video processing: {str(e)}", "" | |
# Perform similarity search | |
def similarity_search(query, num_results, progress=gr.Progress()): | |
sentences_view = pxt.get_table('gong_demo.sentences') | |
progress(0.5, desc="Performing search...") | |
sim = sentences_view.text.similarity(query) | |
results = sentences_view.order_by(sim, asc=False).limit(num_results).select(sentences_view.text).collect().to_pandas() | |
progress(1.0, desc="Search complete") | |
return results | |
def chatbot_response(message, chat_history): | |
def create_chatbot_prompt(context: str, question: str) -> list[dict]: | |
system_message = "You are an AI assistant that answers questions about a call based on the provided context. If the answer cannot be found in the context, say that you don't know." | |
user_message = f"Context:\n{context}\n\nQuestion: {question}" | |
return [ | |
{"role": "system", "content": system_message}, | |
{"role": "user", "content": user_message} | |
] | |
try: | |
sentences_view = pxt.get_table('gong_demo.sentences') | |
# Perform similarity search to get relevant context | |
sim = sentences_view.text.similarity(message) | |
context = sentences_view.order_by(sim, asc=False).limit(5).select(sentences_view.text, sim=sim).collect() | |
# Prepare the context for the prompt | |
context_text = "\n".join([row['text'] for row in context]) | |
# Create a temporary table for the chatbot interaction | |
temp_table = pxt.create_table('gong_demo.temp_chatbot', {'question': pxt.StringType()}) | |
temp_table.insert([{'question': message}]) | |
# Create computed columns for the prompt and response | |
temp_table['chatbot_prompt'] = create_chatbot_prompt(context_text, temp_table.question) | |
temp_table['chatbot_response'] = openai.chat_completions( | |
messages=temp_table.chatbot_prompt, | |
model='gpt-4o-mini-2024-07-18', | |
max_tokens=300 | |
) | |
temp_table['answer'] = temp_table.chatbot_response.choices[0].message.content | |
answer = temp_table.select(temp_table.answer).collect()['answer'][0] | |
# Clean up the temporary table | |
pxt.drop_table('gong_demo.temp_chatbot', force=True) | |
chat_history.append((message, answer)) | |
return "", chat_history # Return both expected outputs | |
except Exception as e: | |
error_message = f"An error occurred: {str(e)}" | |
chat_history.append((message, error_message)) | |
return "", chat_history # Return both expec | |
# Gradio interface | |
with gr.Blocks(theme=gr.themes.Base()) as demo: | |
gr.Markdown( | |
""" | |
<div style="text-align: left; margin-bottom: 20px;"> | |
<img src="https://raw.githubusercontent.com/pixeltable/pixeltable/main/docs/source/data/pixeltable-logo-large.png" alt="Pixeltable" style="max-width: 150px;" /> | |
<h1 style="margin-top: 10px;">Call Analysis AI Tool</h1> | |
</div> | |
""" | |
) | |
gr.HTML( | |
""" | |
<p> | |
<a href="https://github.com/pixeltable/pixeltable" target="_blank" style="color: #F25022; text-decoration: none; font-weight: bold;">Pixeltable</a> is a declarative interface for working with text, images, embeddings, and even video, enabling you to store, transform, index, and iterate on data. | |
</p> | |
""" | |
) | |
with gr.Row(): | |
with gr.Column(): | |
with gr.Accordion("π― What does it do?", open=False): | |
gr.Markdown(""" | |
- ποΈ Transcribes call audio to text | |
- π‘ Generates insights and key points | |
- π Enables content-based similarity search | |
- π€ Provides an AI chatbot for in-depth analysis | |
- π Offers summaries of call data | |
""") | |
with gr.Column(): | |
with gr.Accordion("π οΈ How does it work?", open=False): | |
gr.Markdown(""" | |
1. π€ Upload your call recording (video) | |
2. βοΈ AI processes and analyzes the content | |
3. π Review the transcript and generated insights | |
4. π Use similarity search to explore specific topics | |
5. π¬ Interact with the AI chatbot for deeper understanding | |
""") | |
with gr.Row(): | |
with gr.Column(scale=1): | |
video_file = gr.Video( | |
label=f"Upload Call Recording (max {MAX_VIDEO_SIZE_MB} MB)", | |
include_audio=True, | |
autoplay=False | |
) | |
process_btn = gr.Button("Analyze Call", variant="primary") | |
status_output = gr.Textbox(label="Status", interactive=False) | |
with gr.Column(scale=2): | |
with gr.Tabs() as tabs: | |
with gr.TabItem("π Transcript"): | |
output_transcription = gr.Textbox(label="Call Transcription", lines=10) | |
with gr.TabItem("π‘ Insights"): | |
output_insights = gr.Textbox(label="Key Takeaways", lines=20) | |
with gr.TabItem("π΅ Audio"): | |
audio = gr.Audio(label="Extracted audio", type="filepath", show_download_button=True) | |
with gr.TabItem("π Search"): | |
with gr.Row(): | |
similarity_query = gr.Textbox(label="Search Query", placeholder="Enter a topic or phrase to search for") | |
num_results = gr.Slider(minimum=1, maximum=20, value=5, step=1, label="Number of Results") | |
similarity_search_btn = gr.Button("Search", variant="secondary") | |
similarity_results = gr.DataFrame( | |
headers=["Relevant Text"], | |
label="Search Results", | |
wrap=True | |
) | |
with gr.TabItem("π€ AI Assistant"): | |
chatbot = gr.Chatbot(height=400, label="Chat with AI about the call") | |
with gr.Row(): | |
msg = gr.Textbox(label="Ask a question about the call", placeholder="e.g., What were the main points discussed?", scale=4) | |
send_btn = gr.Button("Send", variant="secondary", scale=1) | |
clear = gr.Button("Clear Chat") | |
gr.Examples( | |
examples=[ | |
"What were the main topics discussed in this call?", | |
"Can you summarize the action items mentioned?", | |
"What was the overall sentiment of the conversation?", | |
"Were there any objections raised by the client?", | |
"What features or products were highlighted during the call?", | |
], | |
inputs=msg, | |
) | |
process_btn.click( | |
process_video, | |
inputs=[video_file], | |
outputs=[output_transcription, output_insights, audio, status_output], | |
show_progress="full" | |
) | |
similarity_search_btn.click( | |
similarity_search, | |
inputs=[similarity_query, num_results], | |
outputs=[similarity_results] | |
) | |
msg.submit(chatbot_response, [msg, chatbot], [msg, chatbot]) | |
send_btn.click(chatbot_response, [msg, chatbot], [msg, chatbot]) | |
clear.click(lambda: None, None, chatbot, queue=False) | |
if __name__ == "__main__": | |
demo.launch(show_api=False, allowed_paths=[os.path.expanduser("~/.pixeltable/media")]) |