|
import gradio as gr |
|
import pixeltable as pxt |
|
from pixeltable.iterators import FrameIterator, StringSplitter |
|
from pixeltable.functions.video import extract_audio |
|
from pixeltable.functions.audio import get_metadata |
|
from pixeltable.functions import openai |
|
import os |
|
import getpass |
|
import numpy as np |
|
from pixeltable.functions.huggingface import sentence_transformer |
|
|
|
|
|
if 'OPENAI_API_KEY' not in os.environ: |
|
os.environ['OPENAI_API_KEY'] = getpass.getpass('Enter your OpenAI API key:') |
|
|
|
MAX_VIDEO_SIZE_MB = 35 |
|
|
|
def process_video(video_file, progress=gr.Progress()): |
|
|
|
progress(0, desc="Initializing...") |
|
|
|
try: |
|
|
|
pxt.drop_dir('gong_demo', force=True) |
|
pxt.create_dir('gong_demo') |
|
|
|
calls_table = pxt.create_table( |
|
'gong_demo.calls', { |
|
"video": pxt.VideoType(nullable=True), |
|
} |
|
) |
|
|
|
|
|
calls_table['audio'] = extract_audio(calls_table.video, format='mp3') |
|
calls_table['metadata'] = get_metadata(calls_table.audio) |
|
calls_table['transcription'] = openai.transcriptions(audio=calls_table.audio, model='whisper-1') |
|
calls_table['transcription_text'] = calls_table.transcription.text.astype(pxt.StringType()) |
|
|
|
sentences_view = pxt.create_view( |
|
'gong_demo.sentences', |
|
calls_table, |
|
iterator=StringSplitter.create( |
|
text=calls_table.transcription_text, |
|
separators='sentence' |
|
) |
|
) |
|
|
|
@pxt.expr_udf |
|
def e5_embed(text: str) -> np.ndarray: |
|
return sentence_transformer(text, model_id='intfloat/e5-large-v2') |
|
|
|
sentences_view.add_embedding_index('text', string_embed=e5_embed) |
|
|
|
progress(0.2, desc="Creating UDFs...") |
|
|
|
|
|
@pxt.udf |
|
def generate_insights(transcription: str) -> list[dict]: |
|
system_msg = 'You are an AI assistant that analyzes call transcriptions. Analyze the following call transcription and provide insights on: 1. Main topics discussed 2. Action items 3. Sentiment analysis 4. Key questions asked' |
|
user_msg = f'Transcription: "{transcription}"' |
|
return [ |
|
{'role': 'system', 'content': system_msg}, |
|
{'role': 'user', 'content': user_msg} |
|
] |
|
|
|
|
|
calls_table['insights_prompt'] = generate_insights(calls_table.transcription_text) |
|
|
|
progress(0.4, desc="Generating insights...") |
|
|
|
|
|
calls_table['insights_response'] = openai.chat_completions(messages=calls_table.insights_prompt, model='gpt-3.5-turbo', max_tokens=500) |
|
|
|
|
|
calls_table['insights'] = calls_table.insights_response.choices[0].message.content |
|
|
|
if not video_file: |
|
return "Please upload a video file.", "" |
|
|
|
|
|
video_size = os.path.getsize(video_file) / (1024 * 1024) |
|
if video_size > MAX_VIDEO_SIZE_MB: |
|
return f"The video file is larger than {MAX_VIDEO_SIZE_MB} MB. Please upload a smaller file.", "" |
|
|
|
progress(0.6, desc="Processing video...") |
|
|
|
|
|
calls_table.insert([{"video": video_file}]) |
|
|
|
progress(0.8, desc="Retrieving results...") |
|
|
|
|
|
result = calls_table.select(calls_table.transcription_text, calls_table.insights, calls_table.audio).tail(1) |
|
transcription = result['transcription_text'][0] |
|
insights = result['insights'][0] |
|
audio = result['audio'][0] |
|
|
|
progress(1.0, desc="Processing complete") |
|
|
|
return transcription, insights, audio, "Processing complete" |
|
|
|
except Exception as e: |
|
return f"An error occurred during video processing: {str(e)}", "" |
|
|
|
|
|
def similarity_search(query, num_results, progress=gr.Progress()): |
|
sentences_view = pxt.get_table('gong_demo.sentences') |
|
|
|
progress(0.5, desc="Performing search...") |
|
|
|
sim = sentences_view.text.similarity(query) |
|
results = sentences_view.order_by(sim, asc=False).limit(num_results).select(sentences_view.text, sim=sim).collect().to_pandas() |
|
|
|
|
|
results['sim'] = results['sim'].apply(lambda x: f"{x*100:.2f}%") |
|
|
|
progress(1.0, desc="Search complete") |
|
return results |
|
|
|
def chatbot_response(message, chat_history): |
|
@pxt.udf |
|
def create_chatbot_prompt(context: str, question: str) -> list[dict]: |
|
system_message = "You are an AI assistant that answers questions about a call based on the provided context. If the answer cannot be found in the context, say that you don't know." |
|
user_message = f"Context:\n{context}\n\nQuestion: {question}" |
|
return [ |
|
{"role": "system", "content": system_message}, |
|
{"role": "user", "content": user_message} |
|
] |
|
|
|
try: |
|
sentences_view = pxt.get_table('gong_demo.sentences') |
|
|
|
|
|
sim = sentences_view.text.similarity(message) |
|
context = sentences_view.order_by(sim, asc=False).limit(5).select(sentences_view.text, sim=sim).collect() |
|
|
|
|
|
context_text = "\n".join([row['text'] for row in context]) |
|
|
|
|
|
temp_table = pxt.create_table('gong_demo.temp_chatbot', {'question': pxt.StringType()}) |
|
temp_table.insert([{'question': message}]) |
|
|
|
|
|
temp_table['chatbot_prompt'] = create_chatbot_prompt(context_text, temp_table.question) |
|
temp_table['chatbot_response'] = openai.chat_completions( |
|
messages=temp_table.chatbot_prompt, |
|
model='gpt-4o-mini-2024-07-18', |
|
max_tokens=300 |
|
) |
|
temp_table['answer'] = temp_table.chatbot_response.choices[0].message.content |
|
|
|
answer = temp_table.select(temp_table.answer).collect()['answer'][0] |
|
|
|
|
|
pxt.drop_table('gong_demo.temp_chatbot', force=True) |
|
|
|
chat_history.append((message, answer)) |
|
return "", chat_history |
|
except Exception as e: |
|
error_message = f"An error occurred: {str(e)}" |
|
chat_history.append((message, error_message)) |
|
return "", chat_history |
|
|
|
|
|
with gr.Blocks(theme=gr.themes.Base()) as demo: |
|
gr.Markdown( |
|
""" |
|
<div style="text-align: left; margin-bottom: 20px;"> |
|
<img src="https://raw.githubusercontent.com/pixeltable/pixeltable/main/docs/source/data/pixeltable-logo-large.png" alt="Pixeltable" style="max-width: 150px;" /> |
|
<h1 style="margin-top: 10px;">Call Analysis AI Tool</h1> |
|
</div> |
|
""" |
|
) |
|
gr.HTML( |
|
""" |
|
<p> |
|
<a href="https://github.com/pixeltable/pixeltable" target="_blank" style="color: #F25022; text-decoration: none; font-weight: bold;">Pixeltable</a> is a declarative interface for working with text, images, embeddings, and even video, enabling you to store, transform, index, and iterate on data. |
|
</p> |
|
""" |
|
) |
|
|
|
with gr.Row(): |
|
with gr.Column(): |
|
with gr.Accordion("π― What does it do?", open=False): |
|
gr.Markdown(""" |
|
- ποΈ Transcribes call audio to text |
|
- π‘ Generates insights and key points |
|
- π Enables content-based similarity search |
|
- π€ Provides an AI chatbot for in-depth analysis |
|
- π Offers summaries of call data |
|
""") |
|
with gr.Column(): |
|
with gr.Accordion("π οΈ How does it work?", open=False): |
|
gr.Markdown(""" |
|
1. π€ Upload your call recording (video) |
|
2. βοΈ AI processes and analyzes the content |
|
3. π Review the transcript and generated insights |
|
4. π Use similarity search to explore specific topics |
|
5. π¬ Interact with the AI chatbot for deeper understanding |
|
""") |
|
|
|
with gr.Row(): |
|
with gr.Column(scale=1): |
|
video_file = gr.Video( |
|
label=f"Upload Call Recording (max {MAX_VIDEO_SIZE_MB} MB)", |
|
include_audio=True, |
|
autoplay=False |
|
) |
|
process_btn = gr.Button("Analyze Call", variant="primary") |
|
status_output = gr.Textbox(label="Status", interactive=False) |
|
|
|
with gr.Column(scale=2): |
|
with gr.Tabs() as tabs: |
|
with gr.TabItem("π Transcript"): |
|
output_transcription = gr.Textbox(label="Call Transcription", lines=10) |
|
|
|
with gr.TabItem("π‘ Insights"): |
|
output_insights = gr.Textbox(label="Key Takeaways", lines=20) |
|
|
|
with gr.TabItem("π΅ Audio"): |
|
output_audio = gr.Audio(label="Extracted Audio", show_download_button=True) |
|
|
|
with gr.TabItem("π Search"): |
|
with gr.Row(): |
|
similarity_query = gr.Textbox(label="Search Query", placeholder="Enter a topic or phrase to search for") |
|
num_results = gr.Slider(minimum=1, maximum=20, value=5, step=1, label="Number of Results") |
|
similarity_search_btn = gr.Button("Search", variant="secondary") |
|
similarity_results = gr.DataFrame( |
|
headers=["Relevant Text", "Similarity Score"], |
|
label="Search Results", |
|
wrap=True |
|
) |
|
|
|
with gr.TabItem("π€ AI Assistant"): |
|
chatbot = gr.Chatbot(height=400, label="Chat with AI about the call") |
|
with gr.Row(): |
|
msg = gr.Textbox(label="Ask a question about the call", placeholder="e.g., What were the main points discussed?", scale=4) |
|
send_btn = gr.Button("Send", variant="secondary", scale=1) |
|
clear = gr.Button("Clear Chat") |
|
|
|
gr.Examples( |
|
examples=[ |
|
"What were the main topics discussed in this call?", |
|
"Can you summarize the action items mentioned?", |
|
"What was the overall sentiment of the conversation?", |
|
"Were there any objections raised by the client?", |
|
"What features or products were highlighted during the call?", |
|
], |
|
inputs=msg, |
|
) |
|
|
|
process_btn.click( |
|
process_video, |
|
inputs=[video_file], |
|
outputs=[output_transcription, output_insights, output_audio, status_output], |
|
show_progress="full" |
|
) |
|
|
|
similarity_search_btn.click( |
|
similarity_search, |
|
inputs=[similarity_query, num_results], |
|
outputs=[similarity_results] |
|
) |
|
|
|
msg.submit(chatbot_response, [msg, chatbot], [msg, chatbot]) |
|
send_btn.click(chatbot_response, [msg, chatbot], [msg, chatbot]) |
|
clear.click(lambda: None, None, chatbot, queue=False) |
|
|
|
if __name__ == "__main__": |
|
demo.launch(show_api=False) |