import gradio as gr import pixeltable as pxt from pixeltable.iterators import FrameIterator, StringSplitter from pixeltable.functions.video import extract_audio from pixeltable.functions.audio import get_metadata from pixeltable.functions import openai import os import getpass import numpy as np from pixeltable.functions.huggingface import sentence_transformer # Store OpenAI API Key if 'OPENAI_API_KEY' not in os.environ: os.environ['OPENAI_API_KEY'] = getpass.getpass('Enter your OpenAI API key:') MAX_VIDEO_SIZE_MB = 35 def process_video(video_file, progress=gr.Progress()): progress(0, desc="Initializing...") try: # Create a Table, a View, and Computed Columns pxt.drop_dir('gong_demo', force=True) pxt.create_dir('gong_demo') calls_table = pxt.create_table( 'gong_demo.calls', { "video": pxt.VideoType(nullable=True), } ) # Create computed columns to store transformations and persist outputs calls_table['audio'] = extract_audio(calls_table.video, format='mp3') calls_table['metadata'] = get_metadata(calls_table.audio) calls_table['transcription'] = openai.transcriptions(audio=calls_table.audio, model='whisper-1') calls_table['transcription_text'] = calls_table.transcription.text.astype(pxt.StringType()) sentences_view = pxt.create_view( 'gong_demo.sentences', calls_table, iterator=StringSplitter.create( text=calls_table.transcription_text, separators='sentence' ) ) @pxt.expr_udf def e5_embed(text: str) -> np.ndarray: return sentence_transformer(text, model_id='intfloat/e5-large-v2') sentences_view.add_embedding_index('text', string_embed=e5_embed) progress(0.2, desc="Creating UDFs...") # Custom User-Defined Function (UDF) for Generating Insights @pxt.udf def generate_insights(transcription: str) -> list[dict]: system_msg = 'You are an AI assistant that analyzes call transcriptions. Analyze the following call transcription and provide insights on: 1. Main topics discussed 2. Action items 3. Sentiment analysis 4. Key questions asked' user_msg = f'Transcription: "{transcription}"' return [ {'role': 'system', 'content': system_msg}, {'role': 'user', 'content': user_msg} ] # Apply the UDF to create a new column calls_table['insights_prompt'] = generate_insights(calls_table.transcription_text) progress(0.4, desc="Generating insights...") # Generate insights using OpenAI's chat completion API calls_table['insights_response'] = openai.chat_completions(messages=calls_table.insights_prompt, model='gpt-3.5-turbo', max_tokens=500) # Extract the content of the response calls_table['insights'] = calls_table.insights_response.choices[0].message.content if not video_file: return "Please upload a video file.", "" # Check video file size video_size = os.path.getsize(video_file) / (1024 * 1024) # Convert to MB if video_size > MAX_VIDEO_SIZE_MB: return f"The video file is larger than {MAX_VIDEO_SIZE_MB} MB. Please upload a smaller file.", "" progress(0.6, desc="Processing video...") # Insert a video into the table calls_table.insert([{"video": video_file}]) progress(0.8, desc="Retrieving results...") # Retrieve transcription and insights result = calls_table.select(calls_table.transcription_text, calls_table.insights, calls_table.audio).tail(1) transcription = result['transcription_text'][0] insights = result['insights'][0] audio = result['audio'][0] progress(1.0, desc="Processing complete") return transcription, insights, audio, "Processing complete" except Exception as e: return f"An error occurred during video processing: {str(e)}", "" # Perform similarity search def similarity_search(query, num_results, progress=gr.Progress()): sentences_view = pxt.get_table('gong_demo.sentences') progress(0.5, desc="Performing search...") sim = sentences_view.text.similarity(query) results = sentences_view.order_by(sim, asc=False).limit(num_results).select(sentences_view.text, sim=sim).collect().to_pandas() # Format similarity scores as percentages results['sim'] = results['sim'].apply(lambda x: f"{x*100:.2f}%") progress(1.0, desc="Search complete") return results def chatbot_response(message, chat_history): @pxt.udf def create_chatbot_prompt(context: str, question: str) -> list[dict]: system_message = "You are an AI assistant that answers questions about a call based on the provided context. If the answer cannot be found in the context, say that you don't know." user_message = f"Context:\n{context}\n\nQuestion: {question}" return [ {"role": "system", "content": system_message}, {"role": "user", "content": user_message} ] try: sentences_view = pxt.get_table('gong_demo.sentences') # Perform similarity search to get relevant context sim = sentences_view.text.similarity(message) context = sentences_view.order_by(sim, asc=False).limit(5).select(sentences_view.text, sim=sim).collect() # Prepare the context for the prompt context_text = "\n".join([row['text'] for row in context]) # Create a temporary table for the chatbot interaction temp_table = pxt.create_table('gong_demo.temp_chatbot', {'question': pxt.StringType()}) temp_table.insert([{'question': message}]) # Create computed columns for the prompt and response temp_table['chatbot_prompt'] = create_chatbot_prompt(context_text, temp_table.question) temp_table['chatbot_response'] = openai.chat_completions( messages=temp_table.chatbot_prompt, model='gpt-4o-mini-2024-07-18', max_tokens=300 ) temp_table['answer'] = temp_table.chatbot_response.choices[0].message.content answer = temp_table.select(temp_table.answer).collect()['answer'][0] # Clean up the temporary table pxt.drop_table('gong_demo.temp_chatbot', force=True) chat_history.append((message, answer)) return "", chat_history # Return both expected outputs except Exception as e: error_message = f"An error occurred: {str(e)}" chat_history.append((message, error_message)) return "", chat_history # Return both expec # Gradio interface with gr.Blocks(theme=gr.themes.Base()) as demo: gr.Markdown( """
Pixeltable

Call Analysis AI Tool

""" ) gr.HTML( """

Pixeltable is a declarative interface for working with text, images, embeddings, and even video, enabling you to store, transform, index, and iterate on data.

""" ) with gr.Row(): with gr.Column(): with gr.Accordion("🎯 What does it do?", open=False): gr.Markdown(""" - 🎙️ Transcribes call audio to text - 💡 Generates insights and key points - 🔍 Enables content-based similarity search - 🤖 Provides an AI chatbot for in-depth analysis - 📊 Offers summaries of call data """) with gr.Column(): with gr.Accordion("🛠️ How does it work?", open=False): gr.Markdown(""" 1. 📤 Upload your call recording (video) 2. ⚙️ AI processes and analyzes the content 3. 📝 Review the transcript and generated insights 4. 🔎 Use similarity search to explore specific topics 5. 💬 Interact with the AI chatbot for deeper understanding """) with gr.Row(): with gr.Column(scale=1): video_file = gr.Video( label=f"Upload Call Recording (max {MAX_VIDEO_SIZE_MB} MB)", include_audio=True, autoplay=False ) process_btn = gr.Button("Analyze Call", variant="primary") status_output = gr.Textbox(label="Status", interactive=False) with gr.Column(scale=2): with gr.Tabs() as tabs: with gr.TabItem("📝 Transcript"): output_transcription = gr.Textbox(label="Call Transcription", lines=10) with gr.TabItem("💡 Insights"): output_insights = gr.Textbox(label="Key Takeaways", lines=20) with gr.TabItem("🎵 Audio"): output_audio = gr.Audio(label="Extracted Audio", show_download_button=True) with gr.TabItem("🔍 Search"): with gr.Row(): similarity_query = gr.Textbox(label="Search Query", placeholder="Enter a topic or phrase to search for") num_results = gr.Slider(minimum=1, maximum=20, value=5, step=1, label="Number of Results") similarity_search_btn = gr.Button("Search", variant="secondary") similarity_results = gr.DataFrame( headers=["Relevant Text", "Similarity Score"], label="Search Results", wrap=True ) with gr.TabItem("🤖 AI Assistant"): chatbot = gr.Chatbot(height=400, label="Chat with AI about the call") with gr.Row(): msg = gr.Textbox(label="Ask a question about the call", placeholder="e.g., What were the main points discussed?", scale=4) send_btn = gr.Button("Send", variant="secondary", scale=1) clear = gr.Button("Clear Chat") gr.Examples( examples=[ "What were the main topics discussed in this call?", "Can you summarize the action items mentioned?", "What was the overall sentiment of the conversation?", "Were there any objections raised by the client?", "What features or products were highlighted during the call?", ], inputs=msg, ) process_btn.click( process_video, inputs=[video_file], outputs=[output_transcription, output_insights, output_audio, status_output], show_progress="full" ) similarity_search_btn.click( similarity_search, inputs=[similarity_query, num_results], outputs=[similarity_results] ) msg.submit(chatbot_response, [msg, chatbot], [msg, chatbot]) send_btn.click(chatbot_response, [msg, chatbot], [msg, chatbot]) clear.click(lambda: None, None, chatbot, queue=False) if __name__ == "__main__": demo.launch(show_api=False)