Spaces:
Runtime error
Runtime error
import sys | |
from PIL import Image | |
import torch | |
from torchvision import transforms | |
from torchvision.transforms.functional import InterpolationMode | |
from models.blip_vqa import blip_vqa | |
from models.blip_itm import blip_itm | |
class VQA: | |
def __init__(self, model_path, image_size=480): | |
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
self.model = blip_vqa(pretrained=model_path, image_size=image_size, vit='base') | |
self.model.eval() | |
self.model = self.model.to(self.device) | |
def load_demo_image(self, image_size, img_path, device): | |
raw_image = Image.open(img_path).convert('RGB') | |
w,h = raw_image.size | |
transform = transforms.Compose([ | |
transforms.Resize((image_size,image_size),interpolation=InterpolationMode.BICUBIC), | |
transforms.ToTensor(), | |
transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)) | |
]) | |
image = transform(raw_image).unsqueeze(0).to(device) | |
return raw_image, image | |
def vqa(self, img_path, question): | |
raw_image, image = self.load_demo_image(image_size=480, img_path=img_path, device=self.device) | |
with torch.no_grad(): | |
answer = self.model(image, question, train=False, inference='generate') | |
return answer[0] | |
class ITM: | |
def __init__(self, model_path, image_size=384): | |
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
self.model = blip_itm(pretrained=model_path, image_size=image_size, vit='base') | |
self.model.eval() | |
self.model = self.model.to(device='cpu') | |
def load_demo_image(self, image_size, img_path, device): | |
raw_image = Image.open(img_path).convert('RGB') | |
w,h = raw_image.size | |
transform = transforms.Compose([ | |
transforms.Resize((image_size,image_size),interpolation=InterpolationMode.BICUBIC), | |
transforms.ToTensor(), | |
transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)) | |
]) | |
image = transform(raw_image).unsqueeze(0).to(device) | |
return raw_image, image | |
def itm(self, img_path, caption): | |
raw_image, image = self.load_demo_image(image_size=384,img_path=img_path, device=self.device) | |
itm_output = self.model(image,caption,match_head='itm') | |
itm_score = torch.nn.functional.softmax(itm_output,dim=1)[:,1] | |
itc_score = self.model(image,caption,match_head='itc') | |
# print('The image and text is matched with a probability of %.4f'%itm_score) | |
# print('The image feature and text feature has a cosine similarity of %.4f'%itc_score) | |
return itm_score, itc_score | |
if __name__=="__main__": | |
if not len(sys.argv) == 3: | |
print('Format: python3 vqa.py <path_to_img> <question>') | |
print('Sample: python3 vqa.py sample.jpg "What is the color of the horse?"') | |
else: | |
model_path = 'checkpoints/model_base_vqa_capfilt_large.pth' | |
model2_path = 'model_base_retrieval_coco.pth' | |
# vqa_object = VQA(model_path=model_path) | |
itm_object = ITM(model_path=model2_path) | |
img_path = sys.argv[1] | |
# question = sys.argv[2] | |
caption = sys.argv[2] | |
# answer = vqa_object.vqa(img_path, caption) | |
itm_score, itc_score = itm_object.itm(img_path, caption) | |
# print('Question: {} | Answer: {}'.format(caption, answer)) | |
print('Caption: {} | The image and text is matched with a probability of %.4f: {} | The image feature and text feature has a cosine similarity of %.4f: {}'.format (caption,itm_score,itc_score)) | |