import sys from PIL import Image import torch from torchvision import transforms from torchvision.transforms.functional import InterpolationMode from models.blip_vqa import blip_vqa from models.blip_itm import blip_itm class VQA: def __init__(self, model_path, image_size=480): self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') self.model = blip_vqa(pretrained=model_path, image_size=image_size, vit='base') self.model.eval() self.model = self.model.to(self.device) def load_demo_image(self, image_size, img_path, device): raw_image = Image.open(img_path).convert('RGB') w,h = raw_image.size transform = transforms.Compose([ transforms.Resize((image_size,image_size),interpolation=InterpolationMode.BICUBIC), transforms.ToTensor(), transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)) ]) image = transform(raw_image).unsqueeze(0).to(device) return raw_image, image def vqa(self, img_path, question): raw_image, image = self.load_demo_image(image_size=480, img_path=img_path, device=self.device) with torch.no_grad(): answer = self.model(image, question, train=False, inference='generate') return answer[0] class ITM: def __init__(self, model_path, image_size=384): self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') self.model = blip_itm(pretrained=model_path, image_size=image_size, vit='base') self.model.eval() self.model = self.model.to(device='cpu') def load_demo_image(self, image_size, img_path, device): raw_image = Image.open(img_path).convert('RGB') w,h = raw_image.size transform = transforms.Compose([ transforms.Resize((image_size,image_size),interpolation=InterpolationMode.BICUBIC), transforms.ToTensor(), transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)) ]) image = transform(raw_image).unsqueeze(0).to(device) return raw_image, image def itm(self, img_path, caption): raw_image, image = self.load_demo_image(image_size=384,img_path=img_path, device=self.device) itm_output = self.model(image,caption,match_head='itm') itm_score = torch.nn.functional.softmax(itm_output,dim=1)[:,1] itc_score = self.model(image,caption,match_head='itc') # print('The image and text is matched with a probability of %.4f'%itm_score) # print('The image feature and text feature has a cosine similarity of %.4f'%itc_score) return itm_score, itc_score if __name__=="__main__": if not len(sys.argv) == 3: print('Format: python3 vqa.py ') print('Sample: python3 vqa.py sample.jpg "What is the color of the horse?"') else: model_path = 'checkpoints/model_base_vqa_capfilt_large.pth' model2_path = 'model_base_retrieval_coco.pth' # vqa_object = VQA(model_path=model_path) itm_object = ITM(model_path=model2_path) img_path = sys.argv[1] # question = sys.argv[2] caption = sys.argv[2] # answer = vqa_object.vqa(img_path, caption) itm_score, itc_score = itm_object.itm(img_path, caption) # print('Question: {} | Answer: {}'.format(caption, answer)) print('Caption: {} | The image and text is matched with a probability of %.4f: {} | The image feature and text feature has a cosine similarity of %.4f: {}'.format (caption,itm_score,itc_score))