Peiyan's picture
Update app.py
35deb04 verified
import gradio as gr
import pandas as pd
import os
from evaluation import evaluate_model # Import your evaluation function
import zipfile
# Define the path where you want to save the leaderboard data
leaderboard_file = "leaderboard.csv"
# Check if leaderboard file exists, otherwise create an empty DataFrame
if os.path.exists(leaderboard_file):
leaderboard = pd.read_csv(leaderboard_file)
else:
leaderboard = pd.DataFrame(columns=["Model Name", "Score"])
print('file ok')
def extract_model(model_file, extract_dir="models"):
"""
Extracts the uploaded model file if it's a zip archive.
"""
os.makedirs(extract_dir, exist_ok=True) # Ensure the directory exists
model_path = os.path.join(extract_dir, model_file.name)
if model_file.name.endswith(".zip"):
with zipfile.ZipFile(model_file, 'r') as zip_ref:
zip_ref.extractall(extract_dir)
print(f"Extracted model to: {extract_dir}")
return extract_dir
else:
# Save the file directly if it's not a zip
model_file.save(model_path)
return model_path
# Submit the evaluation and update the leaderboard
def submit_evaluation(model_name, model_file):
"""
Handles the model submission, evaluates it, and updates the leaderboard.
"""
try:
# Extract or save the uploaded model
model_path = extract_model(model_file)
print(f"Model saved or extracted to: {model_path}")
print("Starting evaluation...")
# Example test data (replace with your actual test dataset)
test_data = [
("negative", 0), # (text, label)
("positive", 1),
]
# Evaluate the model using your custom evaluation code
score = evaluate_model(model_path, test_data)
print(f"Model evaluated successfully. Score: {score}")
# Update the leaderboard
new_entry = {"Model Name": model_name, "Score": score}
global leaderboard
leaderboard = leaderboard.append(new_entry, ignore_index=True)
leaderboard_sorted = leaderboard.sort_values(by="Score", ascending=False)
# Save the updated leaderboard
leaderboard_sorted.to_csv(leaderboard_file, index=False)
print("Leaderboard updated.")
# Return the sorted leaderboard
return leaderboard_sorted, "Model submitted successfully!"
except Exception as e:
print(f"Error during evaluation: {str(e)}")
return leaderboard, f"Error: {str(e)}"
# Create the Gradio interface
with gr.Blocks() as demo:
gr.Markdown("# Model Evaluation Leaderboard")
# User inputs for model name and file upload
with gr.Row():
model_name_input = gr.Textbox(label="Model Name", placeholder="Enter the model name")
model_file_input = gr.File(
label="Upload Model (Supported Formats: .pt, .bin, .h5, .zip)",
file_types=[".pt", ".bin", ".h5", ".zip"]
)
submit_button = gr.Button("Submit Evaluation")
# Leaderboard display and status message
leaderboard_display = gr.Dataframe(leaderboard, label="Leaderboard")
status_message = gr.Textbox(label="Status", interactive=False)
# Link the submit button to the evaluation function
submit_button.click(
submit_evaluation,
inputs=[model_name_input, model_file_input],
outputs=[leaderboard_display, status_message]
)
# Launch the Gradio app
demo.launch(share=True)