import gradio as gr import pandas as pd import os from evaluation import evaluate_model # Import your evaluation function import zipfile # Define the path where you want to save the leaderboard data leaderboard_file = "leaderboard.csv" # Check if leaderboard file exists, otherwise create an empty DataFrame if os.path.exists(leaderboard_file): leaderboard = pd.read_csv(leaderboard_file) else: leaderboard = pd.DataFrame(columns=["Model Name", "Score"]) print('file ok') def extract_model(model_file, extract_dir="models"): """ Extracts the uploaded model file if it's a zip archive. """ os.makedirs(extract_dir, exist_ok=True) # Ensure the directory exists model_path = os.path.join(extract_dir, model_file.name) if model_file.name.endswith(".zip"): with zipfile.ZipFile(model_file, 'r') as zip_ref: zip_ref.extractall(extract_dir) print(f"Extracted model to: {extract_dir}") return extract_dir else: # Save the file directly if it's not a zip model_file.save(model_path) return model_path # Submit the evaluation and update the leaderboard def submit_evaluation(model_name, model_file): """ Handles the model submission, evaluates it, and updates the leaderboard. """ try: # Extract or save the uploaded model model_path = extract_model(model_file) print(f"Model saved or extracted to: {model_path}") print("Starting evaluation...") # Example test data (replace with your actual test dataset) test_data = [ ("negative", 0), # (text, label) ("positive", 1), ] # Evaluate the model using your custom evaluation code score = evaluate_model(model_path, test_data) print(f"Model evaluated successfully. Score: {score}") # Update the leaderboard new_entry = {"Model Name": model_name, "Score": score} global leaderboard leaderboard = leaderboard.append(new_entry, ignore_index=True) leaderboard_sorted = leaderboard.sort_values(by="Score", ascending=False) # Save the updated leaderboard leaderboard_sorted.to_csv(leaderboard_file, index=False) print("Leaderboard updated.") # Return the sorted leaderboard return leaderboard_sorted, "Model submitted successfully!" except Exception as e: print(f"Error during evaluation: {str(e)}") return leaderboard, f"Error: {str(e)}" # Create the Gradio interface with gr.Blocks() as demo: gr.Markdown("# Model Evaluation Leaderboard") # User inputs for model name and file upload with gr.Row(): model_name_input = gr.Textbox(label="Model Name", placeholder="Enter the model name") model_file_input = gr.File( label="Upload Model (Supported Formats: .pt, .bin, .h5, .zip)", file_types=[".pt", ".bin", ".h5", ".zip"] ) submit_button = gr.Button("Submit Evaluation") # Leaderboard display and status message leaderboard_display = gr.Dataframe(leaderboard, label="Leaderboard") status_message = gr.Textbox(label="Status", interactive=False) # Link the submit button to the evaluation function submit_button.click( submit_evaluation, inputs=[model_name_input, model_file_input], outputs=[leaderboard_display, status_message] ) # Launch the Gradio app demo.launch(share=True)