|
--- |
|
title: DragGAN |
|
app_file: visualizer_drag_gradio.py |
|
sdk: gradio |
|
sdk_version: 3.35.2 |
|
--- |
|
<p align="center"> |
|
|
|
<h1 align="center">Drag Your GAN: Interactive Point-based Manipulation on the Generative Image Manifold</h1> |
|
<p align="center"> |
|
<a href="https://xingangpan.github.io/"><strong>Xingang Pan</strong></a> |
|
路 |
|
<a href="https://ayushtewari.com/"><strong>Ayush Tewari</strong></a> |
|
路 |
|
<a href="https://people.mpi-inf.mpg.de/~tleimkue/"><strong>Thomas Leimk眉hler</strong></a> |
|
路 |
|
<a href="https://lingjie0206.github.io/"><strong>Lingjie Liu</strong></a> |
|
路 |
|
<a href="https://www.meka.page/"><strong>Abhimitra Meka</strong></a> |
|
路 |
|
<a href="http://www.mpi-inf.mpg.de/~theobalt/"><strong>Christian Theobalt</strong></a> |
|
</p> |
|
<h2 align="center">SIGGRAPH 2023 Conference Proceedings</h2> |
|
<div align="center"> |
|
<img src="DragGAN.gif", width="600"> |
|
</div> |
|
|
|
<p align="center"> |
|
<br> |
|
<a href="https://pytorch.org/get-started/locally/"><img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-ee4c2c?logo=pytorch&logoColor=white"></a> |
|
<a href="https://twitter.com/XingangP"><img alt='Twitter' src="https://img.shields.io/twitter/follow/XingangP?label=%40XingangP"></a> |
|
<a href="https://arxiv.org/abs/2305.10973"> |
|
<img src='https://img.shields.io/badge/Paper-PDF-green?style=for-the-badge&logo=adobeacrobatreader&logoWidth=20&logoColor=white&labelColor=66cc00&color=94DD15' alt='Paper PDF'> |
|
</a> |
|
<a href='https://vcai.mpi-inf.mpg.de/projects/DragGAN/'> |
|
<img src='https://img.shields.io/badge/DragGAN-Page-orange?style=for-the-badge&logo=Google%20chrome&logoColor=white&labelColor=D35400' alt='Project Page'></a> |
|
<a href="https://colab.research.google.com/drive/1mey-IXPwQC_qSthI5hO-LTX7QL4ivtPh?usp=sharing"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> |
|
</p> |
|
</p> |
|
|
|
## Web Demos |
|
|
|
[![Open in OpenXLab](https://cdn-static.openxlab.org.cn/app-center/openxlab_app.svg)](https://openxlab.org.cn/apps/detail/XingangPan/DragGAN) |
|
|
|
<p align="left"> |
|
<a href="https://huggingface.co/spaces/radames/DragGan"><img alt="Huggingface" src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-DragGAN-orange"></a> |
|
</p> |
|
|
|
## Requirements |
|
|
|
If you have CUDA graphic card, please follow the requirements of [NVlabs/stylegan3](https://github.com/NVlabs/stylegan3#requirements). |
|
|
|
The usual installation steps involve the following commands, they should set up the correct CUDA version and all the python packages |
|
|
|
``` |
|
conda env create -f environment.yml |
|
conda activate stylegan3 |
|
``` |
|
|
|
Then install the additional requirements |
|
|
|
``` |
|
pip install -r requirements |
|
``` |
|
|
|
Otherwise (for GPU acceleration on MacOS with Silicon Mac M1/M2, or just CPU) try the following: |
|
|
|
```sh |
|
cat environment.yml | \ |
|
grep -v -E 'nvidia|cuda' > environment-no-nvidia.yml && \ |
|
conda env create -f environment-no-nvidia.yml |
|
conda activate stylegan3 |
|
|
|
# On MacOS |
|
export PYTORCH_ENABLE_MPS_FALLBACK=1 |
|
``` |
|
|
|
## Run Gradio visualizer in Docker |
|
|
|
Provided docker image is based on NGC PyTorch repository. To quickly try out visualizer in Docker, run the following: |
|
|
|
```sh |
|
docker build . -t draggan:latest |
|
docker run -p 7860: 7860 -v "$PWD":/workspace/src -it draggan:latest bash |
|
cd src && python visualizer_drag_gradio.py --listen |
|
``` |
|
Now you can open a shared link from Gradio (printed in the terminal console). |
|
Beware the Docker image takes about 25GB of disk space! |
|
|
|
## Download pre-trained StyleGAN2 weights |
|
|
|
To download pre-trained weights, simply run: |
|
|
|
``` |
|
python scripts/download_model.py |
|
``` |
|
If you want to try StyleGAN-Human and the Landscapes HQ (LHQ) dataset, please download weights from these links: [StyleGAN-Human](https://drive.google.com/file/d/1dlFEHbu-WzQWJl7nBBZYcTyo000H9hVm/view?usp=sharing), [LHQ](https://drive.google.com/file/d/16twEf0T9QINAEoMsWefoWiyhcTd-aiWc/view?usp=sharing), and put them under `./checkpoints`. |
|
|
|
Feel free to try other pretrained StyleGAN. |
|
|
|
## Run DragGAN GUI |
|
|
|
To start the DragGAN GUI, simply run: |
|
```sh |
|
sh scripts/gui.sh |
|
``` |
|
If you are using windows, you can run: |
|
``` |
|
.\scripts\gui.bat |
|
``` |
|
|
|
This GUI supports editing GAN-generated images. To edit a real image, you need to first perform GAN inversion using tools like [PTI](https://github.com/danielroich/PTI). Then load the new latent code and model weights to the GUI. |
|
|
|
You can run DragGAN Gradio demo as well, this is universal for both windows and linux: |
|
```sh |
|
python visualizer_drag_gradio.py |
|
``` |
|
|
|
## Acknowledgement |
|
|
|
This code is developed based on [StyleGAN3](https://github.com/NVlabs/stylegan3). Part of the code is borrowed from [StyleGAN-Human](https://github.com/stylegan-human/StyleGAN-Human). |
|
|
|
(cheers to the community as well) |
|
## License |
|
|
|
The code related to the DragGAN algorithm is licensed under [CC-BY-NC](https://creativecommons.org/licenses/by-nc/4.0/). |
|
However, most of this project are available under a separate license terms: all codes used or modified from [StyleGAN3](https://github.com/NVlabs/stylegan3) is under the [Nvidia Source Code License](https://github.com/NVlabs/stylegan3/blob/main/LICENSE.txt). |
|
|
|
Any form of use and derivative of this code must preserve the watermarking functionality showing "AI Generated". |
|
|
|
## BibTeX |
|
|
|
```bibtex |
|
@inproceedings{pan2023draggan, |
|
title={Drag Your GAN: Interactive Point-based Manipulation on the Generative Image Manifold}, |
|
author={Pan, Xingang and Tewari, Ayush, and Leimk{\"u}hler, Thomas and Liu, Lingjie and Meka, Abhimitra and Theobalt, Christian}, |
|
booktitle = {ACM SIGGRAPH 2023 Conference Proceedings}, |
|
year={2023} |
|
} |
|
``` |
|
|