Spaces:
Running
Running
paresh95
commited on
Commit
•
59ece0e
1
Parent(s):
3334bb8
PS|Modularise symmetry code
Browse files- app.py +9 -5
- parameters.yml +3 -0
- requirements.txt +1 -1
- utils/face_symmetry.py +142 -5
- utils/face_texture.py +30 -21
app.py
CHANGED
@@ -1,13 +1,17 @@
|
|
1 |
import gradio as gr
|
2 |
from utils.face_texture import GetFaceTexture
|
|
|
3 |
|
4 |
iface = gr.Interface(
|
5 |
fn=GetFaceTexture().main,
|
6 |
inputs=gr.inputs.Image(type="pil"),
|
7 |
-
outputs=[gr.outputs.Image(type="pil"),
|
8 |
-
gr.outputs.Image(type="pil"),
|
9 |
-
"text"
|
10 |
-
]
|
11 |
)
|
12 |
|
13 |
-
iface.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
from utils.face_texture import GetFaceTexture
|
3 |
+
from utils.face_symmetry import GetFaceSymmetry
|
4 |
|
5 |
iface = gr.Interface(
|
6 |
fn=GetFaceTexture().main,
|
7 |
inputs=gr.inputs.Image(type="pil"),
|
8 |
+
outputs=[gr.outputs.Image(type="pil"), gr.outputs.Image(type="pil"), "text"],
|
|
|
|
|
|
|
9 |
)
|
10 |
|
11 |
+
iface = gr.Interface(
|
12 |
+
fn=GetFaceSymmetry().main,
|
13 |
+
inputs=gr.inputs.Image(type="pil"),
|
14 |
+
outputs=[gr.outputs.Image(type="pil"), "text"],
|
15 |
+
)
|
16 |
+
|
17 |
+
iface.launch()
|
parameters.yml
CHANGED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
face_detection:
|
2 |
+
prototxt: "models/face_detection/deploy.prototxt.txt"
|
3 |
+
model: "models/face_detection/res10_300x300_ssd_iter_140000.caffemodel"
|
requirements.txt
CHANGED
@@ -4,4 +4,4 @@ scikit-image==0.21.0
|
|
4 |
dlib==19.24.2
|
5 |
imutils==0.5.4
|
6 |
pillow==9.4.0
|
7 |
-
pyyaml==6.0
|
|
|
4 |
dlib==19.24.2
|
5 |
imutils==0.5.4
|
6 |
pillow==9.4.0
|
7 |
+
pyyaml==6.0
|
utils/face_symmetry.py
CHANGED
@@ -1,5 +1,142 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import numpy as np
|
3 |
+
from utils.cv_utils import get_image
|
4 |
+
from typing import Tuple, List, Union
|
5 |
+
from skimage.metrics import structural_similarity as ssim
|
6 |
+
from scipy.spatial import distance
|
7 |
+
from sklearn.metrics import mean_squared_error, mean_absolute_error
|
8 |
+
from PIL import Image as PILImage
|
9 |
+
import yaml
|
10 |
+
|
11 |
+
with open("parameters.yml", "r") as stream:
|
12 |
+
try:
|
13 |
+
parameters = yaml.safe_load(stream)
|
14 |
+
except yaml.YAMLError as exc:
|
15 |
+
print(exc)
|
16 |
+
|
17 |
+
|
18 |
+
class GetFaceSymmetry:
|
19 |
+
def __init__(self):
|
20 |
+
pass
|
21 |
+
|
22 |
+
def get_faces(self, image: np.array) -> np.array:
|
23 |
+
self.h, self.w = image.shape[:2]
|
24 |
+
blob = cv2.dnn.blobFromImage(image=image, scalefactor=1.0, size=(300, 300))
|
25 |
+
net = cv2.dnn.readNetFromCaffe(
|
26 |
+
parameters["face_detection"]["prototxt"],
|
27 |
+
parameters["face_detection"]["model"],
|
28 |
+
)
|
29 |
+
net.setInput(blob)
|
30 |
+
detections = net.forward()
|
31 |
+
return detections
|
32 |
+
|
33 |
+
@staticmethod
|
34 |
+
def postprocess_face(face: np.array) -> np.array:
|
35 |
+
face = cv2.cvtColor(face, cv2.COLOR_BGR2GRAY)
|
36 |
+
face = cv2.equalizeHist(face) # remove illumination
|
37 |
+
face = cv2.GaussianBlur(face, (5, 5), 0) # remove noise
|
38 |
+
return face
|
39 |
+
|
40 |
+
@staticmethod
|
41 |
+
def get_face_halves(face: np.array) -> Tuple:
|
42 |
+
mid = face.shape[1] // 2
|
43 |
+
left_half = face[:, :mid]
|
44 |
+
right_half = face[:, mid:]
|
45 |
+
right_half = cv2.resize(right_half, (left_half.shape[1], left_half.shape[0]))
|
46 |
+
right_half = cv2.flip(right_half, 1)
|
47 |
+
return left_half, right_half
|
48 |
+
|
49 |
+
@staticmethod
|
50 |
+
def histogram_performance(
|
51 |
+
left_half: np.array, right_half: np.array
|
52 |
+
) -> List[Union[float, float, float, float]]:
|
53 |
+
hist_left = cv2.calcHist([left_half], [0], None, [256], [0, 256])
|
54 |
+
hist_right = cv2.calcHist([right_half], [0], None, [256], [0, 256])
|
55 |
+
|
56 |
+
# Normalize histograms
|
57 |
+
hist_left /= hist_left.sum()
|
58 |
+
hist_right /= hist_right.sum()
|
59 |
+
correlation = cv2.compareHist(hist_left, hist_right, cv2.HISTCMP_CORREL)
|
60 |
+
chi_square = cv2.compareHist(hist_left, hist_right, cv2.HISTCMP_CHISQR)
|
61 |
+
intersection = cv2.compareHist(hist_left, hist_right, cv2.HISTCMP_INTERSECT)
|
62 |
+
bhattacharyya = cv2.compareHist(
|
63 |
+
hist_left, hist_right, cv2.HISTCMP_BHATTACHARYYA
|
64 |
+
)
|
65 |
+
|
66 |
+
return correlation, chi_square, intersection, bhattacharyya
|
67 |
+
|
68 |
+
@staticmethod
|
69 |
+
def orb_detector(left_half: np.array, right_half: np.array) -> int:
|
70 |
+
"""The fewer the matches (or the greater the average distance), the more dissimilar the images"""
|
71 |
+
|
72 |
+
orb = cv2.ORB_create()
|
73 |
+
keypoints_left, descriptors_left = orb.detectAndCompute(left_half, None)
|
74 |
+
keypoints_right, descriptors_right = orb.detectAndCompute(right_half, None)
|
75 |
+
bf = cv2.BFMatcher(cv2.NORM_HAMMING, crossCheck=True)
|
76 |
+
matches = bf.match(descriptors_left, descriptors_right)
|
77 |
+
matches = sorted(matches, key=lambda x: x.distance)
|
78 |
+
return len(matches)
|
79 |
+
|
80 |
+
def get_face_similarity_results(
|
81 |
+
self, left_half: np.array, right_half: np.array
|
82 |
+
) -> dict:
|
83 |
+
structural_similarity, _ = ssim(left_half, right_half, full=True)
|
84 |
+
cosine_distance = distance.cosine(left_half.ravel(), right_half.ravel())
|
85 |
+
mse = mean_squared_error(left_half, right_half)
|
86 |
+
mae = mean_absolute_error(left_half, right_half)
|
87 |
+
(
|
88 |
+
correlation,
|
89 |
+
chi_square,
|
90 |
+
intersection,
|
91 |
+
bhattacharyya,
|
92 |
+
) = self.histogram_performance(left_half, right_half)
|
93 |
+
matches = self.orb_detector(left_half, right_half)
|
94 |
+
pixel_difference = np.sum((left_half - right_half) ** 2)
|
95 |
+
|
96 |
+
d = {
|
97 |
+
"structural_similarity": structural_similarity,
|
98 |
+
"cosine_distance": cosine_distance,
|
99 |
+
"mse": mse,
|
100 |
+
"mae": mae,
|
101 |
+
"histogram_correlation": correlation,
|
102 |
+
"histogram_intersection": intersection,
|
103 |
+
"orb_detector_matches": matches,
|
104 |
+
"pixel_difference": pixel_difference,
|
105 |
+
}
|
106 |
+
return d
|
107 |
+
|
108 |
+
def main(self, image_input):
|
109 |
+
image = get_image(image_input)
|
110 |
+
detections = self.get_faces(image)
|
111 |
+
lowest_mse = float("inf")
|
112 |
+
best_face_data, best_left_half, best_right_half = None, None, None
|
113 |
+
for i in range(0, detections.shape[2]):
|
114 |
+
confidence = detections[0, 0, i, 2]
|
115 |
+
if confidence > 0.99:
|
116 |
+
box = detections[0, 0, i, 3:7] * np.array(
|
117 |
+
[self.w, self.h, self.w, self.h]
|
118 |
+
)
|
119 |
+
(startX, startY, endX, endY) = box.astype("int")
|
120 |
+
face = image[startY:endY, startX:endX]
|
121 |
+
face = self.postprocess_face(face)
|
122 |
+
left_half, right_half = self.get_face_halves(face)
|
123 |
+
d = self.get_face_similarity_results(left_half, right_half)
|
124 |
+
|
125 |
+
if d["mse"] < lowest_mse:
|
126 |
+
best_face_data, best_left_half, best_right_half = (
|
127 |
+
d,
|
128 |
+
left_half,
|
129 |
+
right_half,
|
130 |
+
)
|
131 |
+
lowest_mse = d["mse"]
|
132 |
+
|
133 |
+
full_face = np.hstack((best_left_half, best_right_half))
|
134 |
+
full_face = PILImage.fromarray(full_face)
|
135 |
+
|
136 |
+
return full_face, best_face_data
|
137 |
+
|
138 |
+
|
139 |
+
if __name__ == "__main__":
|
140 |
+
image_path = "data/images_symmetry/gigi_hadid.webp"
|
141 |
+
results = GetFaceSymmetry().main(image_path)
|
142 |
+
print(results)
|
utils/face_texture.py
CHANGED
@@ -1,48 +1,57 @@
|
|
1 |
import cv2
|
2 |
import numpy as np
|
3 |
from skimage.feature import local_binary_pattern
|
4 |
-
import matplotlib.pyplot as plt
|
5 |
import dlib
|
6 |
import imutils
|
7 |
-
import
|
8 |
-
from PIL import Image
|
9 |
from utils.cv_utils import get_image
|
10 |
-
from typing import Tuple
|
11 |
|
12 |
|
13 |
class GetFaceTexture:
|
14 |
def __init__(self) -> None:
|
15 |
pass
|
16 |
-
|
17 |
-
|
18 |
-
|
|
|
19 |
gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
20 |
return gray_image
|
21 |
-
|
22 |
-
|
|
|
23 |
detector = dlib.get_frontal_face_detector()
|
24 |
faces = detector(gray_image, 1)
|
25 |
if len(faces) == 0:
|
26 |
return "No face detected."
|
27 |
|
28 |
-
x, y, w, h = (
|
29 |
-
|
|
|
|
|
|
|
|
|
|
|
30 |
return face_image
|
31 |
-
|
32 |
-
|
|
|
33 |
radius = 1
|
34 |
n_points = 8 * radius
|
35 |
lbp = local_binary_pattern(face_image, n_points, radius, method="uniform")
|
36 |
-
hist, _ = np.histogram(
|
|
|
|
|
37 |
variance = np.var(hist)
|
38 |
std = np.sqrt(variance)
|
39 |
return lbp, std
|
40 |
-
|
41 |
-
|
|
|
42 |
lbp = (lbp * 255).astype(np.uint8)
|
43 |
-
return
|
44 |
-
|
45 |
-
def main(self, image_input) -> Image:
|
46 |
image = get_image(image_input)
|
47 |
gray_image = self.preprocess_image(image)
|
48 |
face_image = self.get_face(gray_image)
|
@@ -51,6 +60,6 @@ class GetFaceTexture:
|
|
51 |
return face_texture_image, face_image, std
|
52 |
|
53 |
|
54 |
-
if __name__ == "__main__":
|
55 |
-
image_path =
|
56 |
print(GetFaceTexture().main(image_path))
|
|
|
1 |
import cv2
|
2 |
import numpy as np
|
3 |
from skimage.feature import local_binary_pattern
|
|
|
4 |
import dlib
|
5 |
import imutils
|
6 |
+
from PIL import Image as PILImage
|
|
|
7 |
from utils.cv_utils import get_image
|
8 |
+
from typing import Tuple, List, Union
|
9 |
|
10 |
|
11 |
class GetFaceTexture:
|
12 |
def __init__(self) -> None:
|
13 |
pass
|
14 |
+
|
15 |
+
@staticmethod
|
16 |
+
def preprocess_image(image) -> np.array:
|
17 |
+
image = imutils.resize(image, width=300)
|
18 |
gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
19 |
return gray_image
|
20 |
+
|
21 |
+
@staticmethod
|
22 |
+
def get_face(gray_image: np.array) -> np.array:
|
23 |
detector = dlib.get_frontal_face_detector()
|
24 |
faces = detector(gray_image, 1)
|
25 |
if len(faces) == 0:
|
26 |
return "No face detected."
|
27 |
|
28 |
+
x, y, w, h = (
|
29 |
+
faces[0].left(),
|
30 |
+
faces[0].top(),
|
31 |
+
faces[0].width(),
|
32 |
+
faces[0].height(),
|
33 |
+
)
|
34 |
+
face_image = gray_image[y: y + h, x: x + w]
|
35 |
return face_image
|
36 |
+
|
37 |
+
@staticmethod
|
38 |
+
def get_face_texture(face_image: np.array) -> Tuple[np.array, float]:
|
39 |
radius = 1
|
40 |
n_points = 8 * radius
|
41 |
lbp = local_binary_pattern(face_image, n_points, radius, method="uniform")
|
42 |
+
hist, _ = np.histogram(
|
43 |
+
lbp.ravel(), bins=np.arange(0, n_points + 3), range=(0, n_points + 2)
|
44 |
+
)
|
45 |
variance = np.var(hist)
|
46 |
std = np.sqrt(variance)
|
47 |
return lbp, std
|
48 |
+
|
49 |
+
@staticmethod
|
50 |
+
def postprocess_image(lbp: np.array) -> PILImage:
|
51 |
lbp = (lbp * 255).astype(np.uint8)
|
52 |
+
return PILImage.fromarray(lbp)
|
53 |
+
|
54 |
+
def main(self, image_input) -> List[Union[PILImage.Image, np.array, float]]:
|
55 |
image = get_image(image_input)
|
56 |
gray_image = self.preprocess_image(image)
|
57 |
face_image = self.get_face(gray_image)
|
|
|
60 |
return face_texture_image, face_image, std
|
61 |
|
62 |
|
63 |
+
if __name__ == "__main__":
|
64 |
+
image_path = "data/images_symmetry/gigi_hadid.webp"
|
65 |
print(GetFaceTexture().main(image_path))
|