Spaces:
Running
Running
paresh95
commited on
Commit
•
3334bb8
1
Parent(s):
e5ce3a7
PS|Added notebooks
Browse files- notebooks/facial_age_gender.ipynb +342 -0
- notebooks/facial_proportions.ipynb +0 -0
- notebooks/facial_symmetry.ipynb +0 -0
- notebooks/facial_texture.ipynb +0 -0
- notebooks/own-photos-symmetry.ipynb +0 -0
- parameters.yml +0 -0
- requirements.txt +2 -1
- utils/face_symmetry.py +5 -0
- utils/face_texture.py +1 -8
notebooks/facial_age_gender.ipynb
ADDED
@@ -0,0 +1,342 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 1,
|
6 |
+
"metadata": {},
|
7 |
+
"outputs": [],
|
8 |
+
"source": [
|
9 |
+
"import cv2\n",
|
10 |
+
"import dlib\n",
|
11 |
+
"import os\n",
|
12 |
+
"import numpy as np\n",
|
13 |
+
"import pandas as pd\n",
|
14 |
+
"import matplotlib.pyplot as plt"
|
15 |
+
]
|
16 |
+
},
|
17 |
+
{
|
18 |
+
"cell_type": "code",
|
19 |
+
"execution_count": 2,
|
20 |
+
"metadata": {},
|
21 |
+
"outputs": [
|
22 |
+
{
|
23 |
+
"data": {
|
24 |
+
"text/plain": [
|
25 |
+
"'/Users/pareshar/Personal/Github/Facial-feature-detector'"
|
26 |
+
]
|
27 |
+
},
|
28 |
+
"execution_count": 2,
|
29 |
+
"metadata": {},
|
30 |
+
"output_type": "execute_result"
|
31 |
+
}
|
32 |
+
],
|
33 |
+
"source": [
|
34 |
+
"current_dir = os.getcwd()\n",
|
35 |
+
"parent_dir = os.path.dirname(current_dir)\n",
|
36 |
+
"os.chdir(parent_dir)\n",
|
37 |
+
"os.getcwd()"
|
38 |
+
]
|
39 |
+
},
|
40 |
+
{
|
41 |
+
"cell_type": "code",
|
42 |
+
"execution_count": 3,
|
43 |
+
"metadata": {},
|
44 |
+
"outputs": [],
|
45 |
+
"source": [
|
46 |
+
"# static variables\n",
|
47 |
+
"path_to_images = \"data/images_age_gender/\"\n",
|
48 |
+
"image_files = os.listdir(path_to_images)\n",
|
49 |
+
"face_detector_weights = \"models/face_detection/res10_300x300_ssd_iter_140000.caffemodel\"\n",
|
50 |
+
"face_detector_config = \"models/face_detection/deploy.prototxt.txt\"\n",
|
51 |
+
"age_weights = \"models/face_age/age_net.caffemodel\"\n",
|
52 |
+
"age_config = \"models/face_age/age_deploy.prototxt\"\n",
|
53 |
+
"gender_weights = \"models/face_gender/gender_net.caffemodel\"\n",
|
54 |
+
"gender_config = \"models/face_gender/gender_deploy.prototxt\"\n",
|
55 |
+
"age_list = ['(0-2)', '(4-6)', '(8-12)', '(15-20)', '(25-32)', '(38-43)', '(48-53)', '(60-100)']\n",
|
56 |
+
"gender_list = ['Male', 'Female']\n",
|
57 |
+
"model_mean = (78.4263377603, 87.7689143744, 114.895847746) # taken from paper"
|
58 |
+
]
|
59 |
+
},
|
60 |
+
{
|
61 |
+
"cell_type": "code",
|
62 |
+
"execution_count": 4,
|
63 |
+
"metadata": {},
|
64 |
+
"outputs": [],
|
65 |
+
"source": [
|
66 |
+
"df = pd.DataFrame(columns=[\"file_name\", \"model\", \"confidence_face_detected\", \"age_range\", \"age_confidence\", \"gender\", \"gender_confidence\"])\n",
|
67 |
+
"df_list = []\n",
|
68 |
+
"\n",
|
69 |
+
"\n",
|
70 |
+
"for image_file in image_files:\n",
|
71 |
+
" image = cv2.imread(path_to_images + image_file)\n",
|
72 |
+
" h, w = image.shape[:2]\n",
|
73 |
+
" blob = cv2.dnn.blobFromImage(image=image, scalefactor=1.0, size=(300, 300))\n",
|
74 |
+
" \n",
|
75 |
+
" face_detector_net = cv2.dnn.readNetFromCaffe(face_detector_config, face_detector_weights)\n",
|
76 |
+
" face_detector_net.setInput(blob)\n",
|
77 |
+
" face_detections = face_detector_net.forward() \n",
|
78 |
+
" age_net = cv2.dnn.readNet(age_weights, age_config)\n",
|
79 |
+
" gender_net = cv2.dnn.readNet(gender_weights, gender_config)\n",
|
80 |
+
" \n",
|
81 |
+
" d = None\n",
|
82 |
+
" \n",
|
83 |
+
" for i in range(0, face_detections.shape[2]):\n",
|
84 |
+
" confidence = face_detections[0, 0, i, 2]\n",
|
85 |
+
" if confidence > 0.97:\n",
|
86 |
+
" box = face_detections[0, 0, i, 3:7] * np.array([w, h, w, h])\n",
|
87 |
+
" (startX, startY, endX, endY) = box.astype(\"int\")\n",
|
88 |
+
" face = image[startY:endY, startX:endX]\n",
|
89 |
+
" \n",
|
90 |
+
" blob = cv2.dnn.blobFromImage(face, 1.0, (227, 227), model_mean, swapRB=False)\n",
|
91 |
+
" \n",
|
92 |
+
" age_net.setInput(blob)\n",
|
93 |
+
" age_preds = age_net.forward()\n",
|
94 |
+
" i = age_preds[0].argmax()\n",
|
95 |
+
" age = age_list[i]\n",
|
96 |
+
" age_confidence_score = age_preds[0][i]\n",
|
97 |
+
" \n",
|
98 |
+
" gender_net.setInput(blob)\n",
|
99 |
+
" gender_preds = gender_net.forward()\n",
|
100 |
+
" i = gender_preds[0].argmax()\n",
|
101 |
+
" gender = gender_list[i]\n",
|
102 |
+
" gender_confidence_score = gender_preds[0][i]\n",
|
103 |
+
" \n",
|
104 |
+
" # plt.imshow(face)\n",
|
105 |
+
" # plt.show() \n",
|
106 |
+
" \n",
|
107 |
+
" d = {\n",
|
108 |
+
" \"file_name\": image_file,\n",
|
109 |
+
" \"model\": \"ageNet\",\n",
|
110 |
+
" \"confidence_face_detected\": confidence,\n",
|
111 |
+
" \"age_range\": age,\n",
|
112 |
+
" \"age_confidence\": age_confidence_score,\n",
|
113 |
+
" \"gender\": gender,\n",
|
114 |
+
" \"gender_confidence\": gender_confidence_score \n",
|
115 |
+
" }\n",
|
116 |
+
" df_list.append(d)\n",
|
117 |
+
" break\n",
|
118 |
+
" \n",
|
119 |
+
" if d is None or image_file != d[\"file_name\"]:\n",
|
120 |
+
" \n",
|
121 |
+
" d = {\n",
|
122 |
+
" \"file_name\": image_file,\n",
|
123 |
+
" \"model\": \"ageNet\",\n",
|
124 |
+
" \"confidence_face_detected\": confidence,\n",
|
125 |
+
" \"age_range\": \"NA\",\n",
|
126 |
+
" \"age_confidence\": \"NA\",\n",
|
127 |
+
" \"gender\": \"NA\",\n",
|
128 |
+
" \"gender_confidence\": \"NA\" \n",
|
129 |
+
" }\n",
|
130 |
+
" \n",
|
131 |
+
" df_list.append(d)\n",
|
132 |
+
" \n",
|
133 |
+
"df = pd.concat([df, pd.DataFrame(df_list)], ignore_index=True).round(2)"
|
134 |
+
]
|
135 |
+
},
|
136 |
+
{
|
137 |
+
"cell_type": "code",
|
138 |
+
"execution_count": 5,
|
139 |
+
"metadata": {},
|
140 |
+
"outputs": [
|
141 |
+
{
|
142 |
+
"data": {
|
143 |
+
"text/html": [
|
144 |
+
"<div>\n",
|
145 |
+
"<style scoped>\n",
|
146 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
147 |
+
" vertical-align: middle;\n",
|
148 |
+
" }\n",
|
149 |
+
"\n",
|
150 |
+
" .dataframe tbody tr th {\n",
|
151 |
+
" vertical-align: top;\n",
|
152 |
+
" }\n",
|
153 |
+
"\n",
|
154 |
+
" .dataframe thead th {\n",
|
155 |
+
" text-align: right;\n",
|
156 |
+
" }\n",
|
157 |
+
"</style>\n",
|
158 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
159 |
+
" <thead>\n",
|
160 |
+
" <tr style=\"text-align: right;\">\n",
|
161 |
+
" <th></th>\n",
|
162 |
+
" <th>file_name</th>\n",
|
163 |
+
" <th>model</th>\n",
|
164 |
+
" <th>confidence_face_detected</th>\n",
|
165 |
+
" <th>age_range</th>\n",
|
166 |
+
" <th>age_confidence</th>\n",
|
167 |
+
" <th>gender</th>\n",
|
168 |
+
" <th>gender_confidence</th>\n",
|
169 |
+
" </tr>\n",
|
170 |
+
" </thead>\n",
|
171 |
+
" <tbody>\n",
|
172 |
+
" <tr>\n",
|
173 |
+
" <th>1</th>\n",
|
174 |
+
" <td>22_me.jpg</td>\n",
|
175 |
+
" <td>ageNet</td>\n",
|
176 |
+
" <td>0.98</td>\n",
|
177 |
+
" <td>(25-32)</td>\n",
|
178 |
+
" <td>0.67165</td>\n",
|
179 |
+
" <td>Male</td>\n",
|
180 |
+
" <td>1.0</td>\n",
|
181 |
+
" </tr>\n",
|
182 |
+
" <tr>\n",
|
183 |
+
" <th>3</th>\n",
|
184 |
+
" <td>25_32_woman.jpg</td>\n",
|
185 |
+
" <td>ageNet</td>\n",
|
186 |
+
" <td>1.00</td>\n",
|
187 |
+
" <td>(25-32)</td>\n",
|
188 |
+
" <td>0.859894</td>\n",
|
189 |
+
" <td>Female</td>\n",
|
190 |
+
" <td>0.952863</td>\n",
|
191 |
+
" </tr>\n",
|
192 |
+
" <tr>\n",
|
193 |
+
" <th>2</th>\n",
|
194 |
+
" <td>38_43_man.jpg</td>\n",
|
195 |
+
" <td>ageNet</td>\n",
|
196 |
+
" <td>1.00</td>\n",
|
197 |
+
" <td>(25-32)</td>\n",
|
198 |
+
" <td>0.681306</td>\n",
|
199 |
+
" <td>Male</td>\n",
|
200 |
+
" <td>0.999431</td>\n",
|
201 |
+
" </tr>\n",
|
202 |
+
" <tr>\n",
|
203 |
+
" <th>8</th>\n",
|
204 |
+
" <td>38_43_woman.jpg</td>\n",
|
205 |
+
" <td>ageNet</td>\n",
|
206 |
+
" <td>0.99</td>\n",
|
207 |
+
" <td>(48-53)</td>\n",
|
208 |
+
" <td>0.886763</td>\n",
|
209 |
+
" <td>Female</td>\n",
|
210 |
+
" <td>0.998737</td>\n",
|
211 |
+
" </tr>\n",
|
212 |
+
" <tr>\n",
|
213 |
+
" <th>7</th>\n",
|
214 |
+
" <td>4_6_boy.jpg</td>\n",
|
215 |
+
" <td>ageNet</td>\n",
|
216 |
+
" <td>0.99</td>\n",
|
217 |
+
" <td>(4-6)</td>\n",
|
218 |
+
" <td>0.639939</td>\n",
|
219 |
+
" <td>Male</td>\n",
|
220 |
+
" <td>0.999049</td>\n",
|
221 |
+
" </tr>\n",
|
222 |
+
" <tr>\n",
|
223 |
+
" <th>4</th>\n",
|
224 |
+
" <td>4_6_girl.jpg</td>\n",
|
225 |
+
" <td>ageNet</td>\n",
|
226 |
+
" <td>0.99</td>\n",
|
227 |
+
" <td>(4-6)</td>\n",
|
228 |
+
" <td>0.319971</td>\n",
|
229 |
+
" <td>Female</td>\n",
|
230 |
+
" <td>0.998801</td>\n",
|
231 |
+
" </tr>\n",
|
232 |
+
" <tr>\n",
|
233 |
+
" <th>6</th>\n",
|
234 |
+
" <td>60_100_man.jpg</td>\n",
|
235 |
+
" <td>ageNet</td>\n",
|
236 |
+
" <td>0.99</td>\n",
|
237 |
+
" <td>(4-6)</td>\n",
|
238 |
+
" <td>0.548595</td>\n",
|
239 |
+
" <td>Male</td>\n",
|
240 |
+
" <td>0.999973</td>\n",
|
241 |
+
" </tr>\n",
|
242 |
+
" <tr>\n",
|
243 |
+
" <th>5</th>\n",
|
244 |
+
" <td>60_100_woman.jpg</td>\n",
|
245 |
+
" <td>ageNet</td>\n",
|
246 |
+
" <td>1.00</td>\n",
|
247 |
+
" <td>(60-100)</td>\n",
|
248 |
+
" <td>0.332936</td>\n",
|
249 |
+
" <td>Female</td>\n",
|
250 |
+
" <td>0.984078</td>\n",
|
251 |
+
" </tr>\n",
|
252 |
+
" <tr>\n",
|
253 |
+
" <th>9</th>\n",
|
254 |
+
" <td>60_100_woman_2.jpg</td>\n",
|
255 |
+
" <td>ageNet</td>\n",
|
256 |
+
" <td>1.00</td>\n",
|
257 |
+
" <td>(38-43)</td>\n",
|
258 |
+
" <td>0.414388</td>\n",
|
259 |
+
" <td>Male</td>\n",
|
260 |
+
" <td>0.518144</td>\n",
|
261 |
+
" </tr>\n",
|
262 |
+
" <tr>\n",
|
263 |
+
" <th>0</th>\n",
|
264 |
+
" <td>minion.jpg</td>\n",
|
265 |
+
" <td>ageNet</td>\n",
|
266 |
+
" <td>0.00</td>\n",
|
267 |
+
" <td>NA</td>\n",
|
268 |
+
" <td>NA</td>\n",
|
269 |
+
" <td>NA</td>\n",
|
270 |
+
" <td>NA</td>\n",
|
271 |
+
" </tr>\n",
|
272 |
+
" </tbody>\n",
|
273 |
+
"</table>\n",
|
274 |
+
"</div>"
|
275 |
+
],
|
276 |
+
"text/plain": [
|
277 |
+
" file_name model confidence_face_detected age_range \\\n",
|
278 |
+
"1 22_me.jpg ageNet 0.98 (25-32) \n",
|
279 |
+
"3 25_32_woman.jpg ageNet 1.00 (25-32) \n",
|
280 |
+
"2 38_43_man.jpg ageNet 1.00 (25-32) \n",
|
281 |
+
"8 38_43_woman.jpg ageNet 0.99 (48-53) \n",
|
282 |
+
"7 4_6_boy.jpg ageNet 0.99 (4-6) \n",
|
283 |
+
"4 4_6_girl.jpg ageNet 0.99 (4-6) \n",
|
284 |
+
"6 60_100_man.jpg ageNet 0.99 (4-6) \n",
|
285 |
+
"5 60_100_woman.jpg ageNet 1.00 (60-100) \n",
|
286 |
+
"9 60_100_woman_2.jpg ageNet 1.00 (38-43) \n",
|
287 |
+
"0 minion.jpg ageNet 0.00 NA \n",
|
288 |
+
"\n",
|
289 |
+
" age_confidence gender gender_confidence \n",
|
290 |
+
"1 0.67165 Male 1.0 \n",
|
291 |
+
"3 0.859894 Female 0.952863 \n",
|
292 |
+
"2 0.681306 Male 0.999431 \n",
|
293 |
+
"8 0.886763 Female 0.998737 \n",
|
294 |
+
"7 0.639939 Male 0.999049 \n",
|
295 |
+
"4 0.319971 Female 0.998801 \n",
|
296 |
+
"6 0.548595 Male 0.999973 \n",
|
297 |
+
"5 0.332936 Female 0.984078 \n",
|
298 |
+
"9 0.414388 Male 0.518144 \n",
|
299 |
+
"0 NA NA NA "
|
300 |
+
]
|
301 |
+
},
|
302 |
+
"execution_count": 5,
|
303 |
+
"metadata": {},
|
304 |
+
"output_type": "execute_result"
|
305 |
+
}
|
306 |
+
],
|
307 |
+
"source": [
|
308 |
+
"df.sort_values(\"file_name\")"
|
309 |
+
]
|
310 |
+
},
|
311 |
+
{
|
312 |
+
"cell_type": "markdown",
|
313 |
+
"metadata": {},
|
314 |
+
"source": [
|
315 |
+
"# Other\n",
|
316 |
+
"- Dataset used to train model: https://talhassner.github.io/home/projects/Adience/Adience-data.html#agegender"
|
317 |
+
]
|
318 |
+
}
|
319 |
+
],
|
320 |
+
"metadata": {
|
321 |
+
"kernelspec": {
|
322 |
+
"display_name": "Python 3",
|
323 |
+
"language": "python",
|
324 |
+
"name": "python3"
|
325 |
+
},
|
326 |
+
"language_info": {
|
327 |
+
"codemirror_mode": {
|
328 |
+
"name": "ipython",
|
329 |
+
"version": 3
|
330 |
+
},
|
331 |
+
"file_extension": ".py",
|
332 |
+
"mimetype": "text/x-python",
|
333 |
+
"name": "python",
|
334 |
+
"nbconvert_exporter": "python",
|
335 |
+
"pygments_lexer": "ipython3",
|
336 |
+
"version": "3.8.10"
|
337 |
+
},
|
338 |
+
"orig_nbformat": 4
|
339 |
+
},
|
340 |
+
"nbformat": 4,
|
341 |
+
"nbformat_minor": 2
|
342 |
+
}
|
notebooks/facial_proportions.ipynb
ADDED
The diff for this file is too large to render.
See raw diff
|
|
notebooks/facial_symmetry.ipynb
ADDED
The diff for this file is too large to render.
See raw diff
|
|
notebooks/facial_texture.ipynb
ADDED
The diff for this file is too large to render.
See raw diff
|
|
notebooks/own-photos-symmetry.ipynb
ADDED
The diff for this file is too large to render.
See raw diff
|
|
parameters.yml
ADDED
File without changes
|
requirements.txt
CHANGED
@@ -3,4 +3,5 @@ numpy==1.23.5
|
|
3 |
scikit-image==0.21.0
|
4 |
dlib==19.24.2
|
5 |
imutils==0.5.4
|
6 |
-
pillow==9.4.0
|
|
|
|
3 |
scikit-image==0.21.0
|
4 |
dlib==19.24.2
|
5 |
imutils==0.5.4
|
6 |
+
pillow==9.4.0
|
7 |
+
pyyaml==6.0
|
utils/face_symmetry.py
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#TODO: create YAML file to point towards static parameters
|
2 |
+
#TODO: Test main output and app
|
3 |
+
#TODO: Consider using other method for face detector - this one not as reliable
|
4 |
+
#TODO: Text output showing other examples - celeb, child, gender
|
5 |
+
#TODO: Move notebooks here
|
utils/face_texture.py
CHANGED
@@ -10,19 +10,12 @@ from utils.cv_utils import get_image
|
|
10 |
from typing import Tuple
|
11 |
|
12 |
|
13 |
-
#TODO: face texture class - face detector and output face
|
14 |
-
#TODO: create YAML file to point towards static parameters
|
15 |
-
#TODO: Test main output and app
|
16 |
-
#TODO: Consider using other method for face detector - this one not as reliable
|
17 |
-
#TODO: Text output showing other examples - celeb, child, gender
|
18 |
-
|
19 |
-
|
20 |
class GetFaceTexture:
|
21 |
def __init__(self) -> None:
|
22 |
pass
|
23 |
|
24 |
def preprocess_image(self, image) -> np.array:
|
25 |
-
image = imutils.resize(image, width=
|
26 |
gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
27 |
return gray_image
|
28 |
|
|
|
10 |
from typing import Tuple
|
11 |
|
12 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
class GetFaceTexture:
|
14 |
def __init__(self) -> None:
|
15 |
pass
|
16 |
|
17 |
def preprocess_image(self, image) -> np.array:
|
18 |
+
image = imutils.resize(image, width=400)
|
19 |
gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
20 |
return gray_image
|
21 |
|