Spaces:
Starting
on
T4
Starting
on
T4
from torch.nn import Linear, Conv2d, BatchNorm1d, BatchNorm2d, PReLU, Dropout, Sequential, Module | |
from model.encoder.encoders.helpers import get_blocks, Flatten, bottleneck_IR, bottleneck_IR_SE, l2_norm | |
""" | |
Modified Backbone implementation from [TreB1eN](https://github.com/TreB1eN/InsightFace_Pytorch) | |
""" | |
class Backbone(Module): | |
def __init__(self, input_size, num_layers, mode='ir', drop_ratio=0.4, affine=True): | |
super(Backbone, self).__init__() | |
assert input_size in [112, 224], "input_size should be 112 or 224" | |
assert num_layers in [50, 100, 152], "num_layers should be 50, 100 or 152" | |
assert mode in ['ir', 'ir_se'], "mode should be ir or ir_se" | |
blocks = get_blocks(num_layers) | |
if mode == 'ir': | |
unit_module = bottleneck_IR | |
elif mode == 'ir_se': | |
unit_module = bottleneck_IR_SE | |
self.input_layer = Sequential(Conv2d(3, 64, (3, 3), 1, 1, bias=False), | |
BatchNorm2d(64), | |
PReLU(64)) | |
if input_size == 112: | |
self.output_layer = Sequential(BatchNorm2d(512), | |
Dropout(drop_ratio), | |
Flatten(), | |
Linear(512 * 7 * 7, 512), | |
BatchNorm1d(512, affine=affine)) | |
else: | |
self.output_layer = Sequential(BatchNorm2d(512), | |
Dropout(drop_ratio), | |
Flatten(), | |
Linear(512 * 14 * 14, 512), | |
BatchNorm1d(512, affine=affine)) | |
modules = [] | |
for block in blocks: | |
for bottleneck in block: | |
modules.append(unit_module(bottleneck.in_channel, | |
bottleneck.depth, | |
bottleneck.stride)) | |
self.body = Sequential(*modules) | |
def forward(self, x): | |
x = self.input_layer(x) | |
x = self.body(x) | |
x = self.output_layer(x) | |
return l2_norm(x) | |
def IR_50(input_size): | |
"""Constructs a ir-50 model.""" | |
model = Backbone(input_size, num_layers=50, mode='ir', drop_ratio=0.4, affine=False) | |
return model | |
def IR_101(input_size): | |
"""Constructs a ir-101 model.""" | |
model = Backbone(input_size, num_layers=100, mode='ir', drop_ratio=0.4, affine=False) | |
return model | |
def IR_152(input_size): | |
"""Constructs a ir-152 model.""" | |
model = Backbone(input_size, num_layers=152, mode='ir', drop_ratio=0.4, affine=False) | |
return model | |
def IR_SE_50(input_size): | |
"""Constructs a ir_se-50 model.""" | |
model = Backbone(input_size, num_layers=50, mode='ir_se', drop_ratio=0.4, affine=False) | |
return model | |
def IR_SE_101(input_size): | |
"""Constructs a ir_se-101 model.""" | |
model = Backbone(input_size, num_layers=100, mode='ir_se', drop_ratio=0.4, affine=False) | |
return model | |
def IR_SE_152(input_size): | |
"""Constructs a ir_se-152 model.""" | |
model = Backbone(input_size, num_layers=152, mode='ir_se', drop_ratio=0.4, affine=False) | |
return model | |