Spaces:
Running
on
T4
Running
on
T4
// Copyright (c) 2019, NVIDIA Corporation. All rights reserved. | |
// | |
// This work is made available under the Nvidia Source Code License-NC. | |
// To view a copy of this license, visit | |
// https://nvlabs.github.io/stylegan2/license.html | |
template <typename scalar_t> | |
static __global__ void | |
fused_bias_act_kernel(scalar_t *out, const scalar_t *p_x, const scalar_t *p_b, | |
const scalar_t *p_ref, int act, int grad, scalar_t alpha, | |
scalar_t scale, int loop_x, int size_x, int step_b, | |
int size_b, int use_bias, int use_ref) { | |
int xi = blockIdx.x * loop_x * blockDim.x + threadIdx.x; | |
scalar_t zero = 0.0; | |
for (int loop_idx = 0; loop_idx < loop_x && xi < size_x; | |
loop_idx++, xi += blockDim.x) { | |
scalar_t x = p_x[xi]; | |
if (use_bias) { | |
x += p_b[(xi / step_b) % size_b]; | |
} | |
scalar_t ref = use_ref ? p_ref[xi] : zero; | |
scalar_t y; | |
switch (act * 10 + grad) { | |
default: | |
case 10: | |
y = x; | |
break; | |
case 11: | |
y = x; | |
break; | |
case 12: | |
y = 0.0; | |
break; | |
case 30: | |
y = (x > 0.0) ? x : x * alpha; | |
break; | |
case 31: | |
y = (ref > 0.0) ? x : x * alpha; | |
break; | |
case 32: | |
y = 0.0; | |
break; | |
} | |
out[xi] = y * scale; | |
} | |
} | |
torch::Tensor fused_bias_act_op(const torch::Tensor &input, | |
const torch::Tensor &bias, | |
const torch::Tensor &refer, int act, int grad, | |
float alpha, float scale) { | |
int curDevice = -1; | |
cudaGetDevice(&curDevice); | |
cudaStream_t stream = at::cuda::getCurrentCUDAStream(); | |
auto x = input.contiguous(); | |
auto b = bias.contiguous(); | |
auto ref = refer.contiguous(); | |
int use_bias = b.numel() ? 1 : 0; | |
int use_ref = ref.numel() ? 1 : 0; | |
int size_x = x.numel(); | |
int size_b = b.numel(); | |
int step_b = 1; | |
for (int i = 1 + 1; i < x.dim(); i++) { | |
step_b *= x.size(i); | |
} | |
int loop_x = 4; | |
int block_size = 4 * 32; | |
int grid_size = (size_x - 1) / (loop_x * block_size) + 1; | |
auto y = torch::empty_like(x); | |
AT_DISPATCH_FLOATING_TYPES_AND_HALF( | |
x.scalar_type(), "fused_bias_act_kernel", [&] { | |
fused_bias_act_kernel<scalar_t><<<grid_size, block_size, 0, stream>>>( | |
y.data_ptr<scalar_t>(), x.data_ptr<scalar_t>(), | |
b.data_ptr<scalar_t>(), ref.data_ptr<scalar_t>(), act, grad, alpha, | |
scale, loop_x, size_x, step_b, size_b, use_bias, use_ref); | |
}); | |
return y; | |
} |