PKUWilliamYang's picture
V1
983684c
raw
history blame
982 Bytes
import torch
from torch import nn
from torch.nn import functional as F
class FusedLeakyReLU(nn.Module):
def __init__(self, channel, bias=True, negative_slope=0.2, scale=2 ** 0.5):
super().__init__()
if bias:
self.bias = nn.Parameter(torch.zeros(channel))
else:
self.bias = None
self.negative_slope = negative_slope
self.scale = scale
def forward(self, inputs):
return fused_leaky_relu(inputs, self.bias, self.negative_slope, self.scale)
def fused_leaky_relu(inputs, bias=None, negative_slope=0.2, scale=2 ** 0.5):
if bias is not None:
rest_dim = [1] * (inputs.ndim - bias.ndim - 1)
return (
F.leaky_relu(
inputs + bias.view(1, bias.shape[0], *rest_dim), negative_slope=negative_slope
)
* scale
)
else:
return F.leaky_relu(inputs, negative_slope=negative_slope) * scale