Spaces:
Running
on
T4
Running
on
T4
import sys | |
sys.path.append('core') | |
from PIL import Image | |
import argparse | |
import os | |
import time | |
import numpy as np | |
import torch | |
import torch.nn.functional as F | |
import matplotlib.pyplot as plt | |
import datasets | |
from utils import flow_viz | |
from utils import frame_utils | |
from raft import RAFT | |
from utils.utils import InputPadder, forward_interpolate | |
def create_sintel_submission(model, iters=32, warm_start=False, output_path='sintel_submission'): | |
""" Create submission for the Sintel leaderboard """ | |
model.eval() | |
for dstype in ['clean', 'final']: | |
test_dataset = datasets.MpiSintel(split='test', aug_params=None, dstype=dstype) | |
flow_prev, sequence_prev = None, None | |
for test_id in range(len(test_dataset)): | |
image1, image2, (sequence, frame) = test_dataset[test_id] | |
if sequence != sequence_prev: | |
flow_prev = None | |
padder = InputPadder(image1.shape) | |
image1, image2 = padder.pad(image1[None].cuda(), image2[None].cuda()) | |
flow_low, flow_pr = model(image1, image2, iters=iters, flow_init=flow_prev, test_mode=True) | |
flow = padder.unpad(flow_pr[0]).permute(1, 2, 0).cpu().numpy() | |
if warm_start: | |
flow_prev = forward_interpolate(flow_low[0])[None].cuda() | |
output_dir = os.path.join(output_path, dstype, sequence) | |
output_file = os.path.join(output_dir, 'frame%04d.flo' % (frame+1)) | |
if not os.path.exists(output_dir): | |
os.makedirs(output_dir) | |
frame_utils.writeFlow(output_file, flow) | |
sequence_prev = sequence | |
def create_kitti_submission(model, iters=24, output_path='kitti_submission'): | |
""" Create submission for the Sintel leaderboard """ | |
model.eval() | |
test_dataset = datasets.KITTI(split='testing', aug_params=None) | |
if not os.path.exists(output_path): | |
os.makedirs(output_path) | |
for test_id in range(len(test_dataset)): | |
image1, image2, (frame_id, ) = test_dataset[test_id] | |
padder = InputPadder(image1.shape, mode='kitti') | |
image1, image2 = padder.pad(image1[None].cuda(), image2[None].cuda()) | |
_, flow_pr = model(image1, image2, iters=iters, test_mode=True) | |
flow = padder.unpad(flow_pr[0]).permute(1, 2, 0).cpu().numpy() | |
output_filename = os.path.join(output_path, frame_id) | |
frame_utils.writeFlowKITTI(output_filename, flow) | |
def validate_chairs(model, iters=24): | |
""" Perform evaluation on the FlyingChairs (test) split """ | |
model.eval() | |
epe_list = [] | |
val_dataset = datasets.FlyingChairs(split='validation') | |
for val_id in range(len(val_dataset)): | |
image1, image2, flow_gt, _ = val_dataset[val_id] | |
image1 = image1[None].cuda() | |
image2 = image2[None].cuda() | |
_, flow_pr = model(image1, image2, iters=iters, test_mode=True) | |
epe = torch.sum((flow_pr[0].cpu() - flow_gt)**2, dim=0).sqrt() | |
epe_list.append(epe.view(-1).numpy()) | |
epe = np.mean(np.concatenate(epe_list)) | |
print("Validation Chairs EPE: %f" % epe) | |
return {'chairs': epe} | |
def validate_sintel(model, iters=32): | |
""" Peform validation using the Sintel (train) split """ | |
model.eval() | |
results = {} | |
for dstype in ['clean', 'final']: | |
val_dataset = datasets.MpiSintel(split='training', dstype=dstype) | |
epe_list = [] | |
for val_id in range(len(val_dataset)): | |
image1, image2, flow_gt, _ = val_dataset[val_id] | |
image1 = image1[None].cuda() | |
image2 = image2[None].cuda() | |
padder = InputPadder(image1.shape) | |
image1, image2 = padder.pad(image1, image2) | |
flow_low, flow_pr = model(image1, image2, iters=iters, test_mode=True) | |
flow = padder.unpad(flow_pr[0]).cpu() | |
epe = torch.sum((flow - flow_gt)**2, dim=0).sqrt() | |
epe_list.append(epe.view(-1).numpy()) | |
epe_all = np.concatenate(epe_list) | |
epe = np.mean(epe_all) | |
px1 = np.mean(epe_all<1) | |
px3 = np.mean(epe_all<3) | |
px5 = np.mean(epe_all<5) | |
print("Validation (%s) EPE: %f, 1px: %f, 3px: %f, 5px: %f" % (dstype, epe, px1, px3, px5)) | |
results[dstype] = np.mean(epe_list) | |
return results | |
def validate_kitti(model, iters=24): | |
""" Peform validation using the KITTI-2015 (train) split """ | |
model.eval() | |
val_dataset = datasets.KITTI(split='training') | |
out_list, epe_list = [], [] | |
for val_id in range(len(val_dataset)): | |
image1, image2, flow_gt, valid_gt = val_dataset[val_id] | |
image1 = image1[None].cuda() | |
image2 = image2[None].cuda() | |
padder = InputPadder(image1.shape, mode='kitti') | |
image1, image2 = padder.pad(image1, image2) | |
flow_low, flow_pr = model(image1, image2, iters=iters, test_mode=True) | |
flow = padder.unpad(flow_pr[0]).cpu() | |
epe = torch.sum((flow - flow_gt)**2, dim=0).sqrt() | |
mag = torch.sum(flow_gt**2, dim=0).sqrt() | |
epe = epe.view(-1) | |
mag = mag.view(-1) | |
val = valid_gt.view(-1) >= 0.5 | |
out = ((epe > 3.0) & ((epe/mag) > 0.05)).float() | |
epe_list.append(epe[val].mean().item()) | |
out_list.append(out[val].cpu().numpy()) | |
epe_list = np.array(epe_list) | |
out_list = np.concatenate(out_list) | |
epe = np.mean(epe_list) | |
f1 = 100 * np.mean(out_list) | |
print("Validation KITTI: %f, %f" % (epe, f1)) | |
return {'kitti-epe': epe, 'kitti-f1': f1} | |
if __name__ == '__main__': | |
parser = argparse.ArgumentParser() | |
parser.add_argument('--model', help="restore checkpoint") | |
parser.add_argument('--dataset', help="dataset for evaluation") | |
parser.add_argument('--small', action='store_true', help='use small model') | |
parser.add_argument('--mixed_precision', action='store_true', help='use mixed precision') | |
parser.add_argument('--alternate_corr', action='store_true', help='use efficent correlation implementation') | |
args = parser.parse_args() | |
model = torch.nn.DataParallel(RAFT(args)) | |
model.load_state_dict(torch.load(args.model)) | |
model.cuda() | |
model.eval() | |
# create_sintel_submission(model.module, warm_start=True) | |
# create_kitti_submission(model.module) | |
with torch.no_grad(): | |
if args.dataset == 'chairs': | |
validate_chairs(model.module) | |
elif args.dataset == 'sintel': | |
validate_sintel(model.module) | |
elif args.dataset == 'kitti': | |
validate_kitti(model.module) | |