Spaces:
Running
on
T4
Running
on
T4
""" | |
This file defines the core research contribution | |
""" | |
import matplotlib | |
matplotlib.use('Agg') | |
import math | |
import torch | |
from torch import nn | |
from model.encoder.encoders import psp_encoders | |
from model.stylegan.model import Generator | |
def get_keys(d, name): | |
if 'state_dict' in d: | |
d = d['state_dict'] | |
d_filt = {k[len(name) + 1:]: v for k, v in d.items() if k[:len(name)] == name} | |
return d_filt | |
class pSp(nn.Module): | |
def __init__(self, opts): | |
super(pSp, self).__init__() | |
self.set_opts(opts) | |
# compute number of style inputs based on the output resolution | |
self.opts.n_styles = int(math.log(self.opts.output_size, 2)) * 2 - 2 | |
# Define architecture | |
self.encoder = self.set_encoder() | |
self.decoder = Generator(self.opts.output_size, 512, 8) | |
self.face_pool = torch.nn.AdaptiveAvgPool2d((256, 256)) | |
# Load weights if needed | |
self.load_weights() | |
def set_encoder(self): | |
if self.opts.encoder_type == 'GradualStyleEncoder': | |
encoder = psp_encoders.GradualStyleEncoder(50, 'ir_se', self.opts) | |
elif self.opts.encoder_type == 'BackboneEncoderUsingLastLayerIntoW': | |
encoder = psp_encoders.BackboneEncoderUsingLastLayerIntoW(50, 'ir_se', self.opts) | |
elif self.opts.encoder_type == 'BackboneEncoderUsingLastLayerIntoWPlus': | |
encoder = psp_encoders.BackboneEncoderUsingLastLayerIntoWPlus(50, 'ir_se', self.opts) | |
else: | |
raise Exception('{} is not a valid encoders'.format(self.opts.encoder_type)) | |
return encoder | |
def load_weights(self): | |
if self.opts.checkpoint_path is not None: | |
print('Loading pSp from checkpoint: {}'.format(self.opts.checkpoint_path)) | |
ckpt = torch.load(self.opts.checkpoint_path, map_location='cpu') | |
self.encoder.load_state_dict(get_keys(ckpt, 'encoder'), strict=True) | |
self.decoder.load_state_dict(get_keys(ckpt, 'decoder'), strict=True) | |
self.__load_latent_avg(ckpt) | |
else: | |
pass | |
'''print('Loading encoders weights from irse50!') | |
encoder_ckpt = torch.load(model_paths['ir_se50']) | |
# if input to encoder is not an RGB image, do not load the input layer weights | |
if self.opts.label_nc != 0: | |
encoder_ckpt = {k: v for k, v in encoder_ckpt.items() if "input_layer" not in k} | |
self.encoder.load_state_dict(encoder_ckpt, strict=False) | |
print('Loading decoder weights from pretrained!') | |
ckpt = torch.load(self.opts.stylegan_weights) | |
self.decoder.load_state_dict(ckpt['g_ema'], strict=False) | |
if self.opts.learn_in_w: | |
self.__load_latent_avg(ckpt, repeat=1) | |
else: | |
self.__load_latent_avg(ckpt, repeat=self.opts.n_styles) | |
''' | |
def forward(self, x, resize=True, latent_mask=None, input_code=False, randomize_noise=True, | |
inject_latent=None, return_latents=False, alpha=None, z_plus_latent=False, return_z_plus_latent=True): | |
if input_code: | |
codes = x | |
else: | |
codes = self.encoder(x) | |
#print(codes.shape) | |
# normalize with respect to the center of an average face | |
if self.opts.start_from_latent_avg: | |
if self.opts.learn_in_w: | |
codes = codes + self.latent_avg.repeat(codes.shape[0], 1) | |
else: | |
codes = codes + self.latent_avg.repeat(codes.shape[0], 1, 1) | |
if latent_mask is not None: | |
for i in latent_mask: | |
if inject_latent is not None: | |
if alpha is not None: | |
codes[:, i] = alpha * inject_latent[:, i] + (1 - alpha) * codes[:, i] | |
else: | |
codes[:, i] = inject_latent[:, i] | |
else: | |
codes[:, i] = 0 | |
input_is_latent = not input_code | |
if z_plus_latent: | |
input_is_latent = False | |
images, result_latent = self.decoder([codes], | |
input_is_latent=input_is_latent, | |
randomize_noise=randomize_noise, | |
return_latents=return_latents, | |
z_plus_latent=z_plus_latent) | |
if resize: | |
images = self.face_pool(images) | |
if return_latents: | |
if z_plus_latent and return_z_plus_latent: | |
return images, codes | |
if z_plus_latent and not return_z_plus_latent: | |
return images, result_latent | |
else: | |
return images, result_latent | |
else: | |
return images | |
def set_opts(self, opts): | |
self.opts = opts | |
def __load_latent_avg(self, ckpt, repeat=None): | |
if 'latent_avg' in ckpt: | |
self.latent_avg = ckpt['latent_avg'].to(self.opts.device) | |
if repeat is not None: | |
self.latent_avg = self.latent_avg.repeat(repeat, 1) | |
else: | |
self.latent_avg = None | |