Spaces:
Running
on
T4
Running
on
T4
PKUWilliamYang
commited on
Commit
•
3b98894
1
Parent(s):
c3f9de8
Upload 6 files
Browse files- datasets/__init__.py +0 -0
- datasets/augmentations.py +110 -0
- datasets/ffhq_degradation_dataset.py +235 -0
- datasets/gt_res_dataset.py +32 -0
- datasets/images_dataset.py +33 -0
- datasets/inference_dataset.py +22 -0
datasets/__init__.py
ADDED
File without changes
|
datasets/augmentations.py
ADDED
@@ -0,0 +1,110 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import torch
|
3 |
+
from torch import nn
|
4 |
+
from torch.nn import functional as F
|
5 |
+
from torchvision import transforms
|
6 |
+
|
7 |
+
|
8 |
+
class ToOneHot(object):
|
9 |
+
""" Convert the input PIL image to a one-hot torch tensor """
|
10 |
+
def __init__(self, n_classes=None):
|
11 |
+
self.n_classes = n_classes
|
12 |
+
|
13 |
+
def onehot_initialization(self, a):
|
14 |
+
if self.n_classes is None:
|
15 |
+
self.n_classes = len(np.unique(a))
|
16 |
+
out = np.zeros(a.shape + (self.n_classes, ), dtype=int)
|
17 |
+
out[self.__all_idx(a, axis=2)] = 1
|
18 |
+
return out
|
19 |
+
|
20 |
+
def __all_idx(self, idx, axis):
|
21 |
+
grid = np.ogrid[tuple(map(slice, idx.shape))]
|
22 |
+
grid.insert(axis, idx)
|
23 |
+
return tuple(grid)
|
24 |
+
|
25 |
+
def __call__(self, img):
|
26 |
+
img = np.array(img)
|
27 |
+
one_hot = self.onehot_initialization(img)
|
28 |
+
return one_hot
|
29 |
+
|
30 |
+
|
31 |
+
class BilinearResize(object):
|
32 |
+
def __init__(self, factors=[1, 2, 4, 8, 16, 32]):
|
33 |
+
self.factors = factors
|
34 |
+
|
35 |
+
def __call__(self, image):
|
36 |
+
factor = np.random.choice(self.factors, size=1)[0]
|
37 |
+
D = BicubicDownSample(factor=factor, cuda=False)
|
38 |
+
img_tensor = transforms.ToTensor()(image).unsqueeze(0)
|
39 |
+
img_tensor_lr = D(img_tensor)[0].clamp(0, 1)
|
40 |
+
img_low_res = transforms.ToPILImage()(img_tensor_lr)
|
41 |
+
return img_low_res
|
42 |
+
|
43 |
+
|
44 |
+
class BicubicDownSample(nn.Module):
|
45 |
+
def bicubic_kernel(self, x, a=-0.50):
|
46 |
+
"""
|
47 |
+
This equation is exactly copied from the website below:
|
48 |
+
https://clouard.users.greyc.fr/Pantheon/experiments/rescaling/index-en.html#bicubic
|
49 |
+
"""
|
50 |
+
abs_x = torch.abs(x)
|
51 |
+
if abs_x <= 1.:
|
52 |
+
return (a + 2.) * torch.pow(abs_x, 3.) - (a + 3.) * torch.pow(abs_x, 2.) + 1
|
53 |
+
elif 1. < abs_x < 2.:
|
54 |
+
return a * torch.pow(abs_x, 3) - 5. * a * torch.pow(abs_x, 2.) + 8. * a * abs_x - 4. * a
|
55 |
+
else:
|
56 |
+
return 0.0
|
57 |
+
|
58 |
+
def __init__(self, factor=4, cuda=True, padding='reflect'):
|
59 |
+
super().__init__()
|
60 |
+
self.factor = factor
|
61 |
+
size = factor * 4
|
62 |
+
k = torch.tensor([self.bicubic_kernel((i - torch.floor(torch.tensor(size / 2)) + 0.5) / factor)
|
63 |
+
for i in range(size)], dtype=torch.float32)
|
64 |
+
k = k / torch.sum(k)
|
65 |
+
k1 = torch.reshape(k, shape=(1, 1, size, 1))
|
66 |
+
self.k1 = torch.cat([k1, k1, k1], dim=0)
|
67 |
+
k2 = torch.reshape(k, shape=(1, 1, 1, size))
|
68 |
+
self.k2 = torch.cat([k2, k2, k2], dim=0)
|
69 |
+
self.cuda = '.cuda' if cuda else ''
|
70 |
+
self.padding = padding
|
71 |
+
for param in self.parameters():
|
72 |
+
param.requires_grad = False
|
73 |
+
|
74 |
+
def forward(self, x, nhwc=False, clip_round=False, byte_output=False):
|
75 |
+
filter_height = self.factor * 4
|
76 |
+
filter_width = self.factor * 4
|
77 |
+
stride = self.factor
|
78 |
+
|
79 |
+
pad_along_height = max(filter_height - stride, 0)
|
80 |
+
pad_along_width = max(filter_width - stride, 0)
|
81 |
+
filters1 = self.k1.type('torch{}.FloatTensor'.format(self.cuda))
|
82 |
+
filters2 = self.k2.type('torch{}.FloatTensor'.format(self.cuda))
|
83 |
+
|
84 |
+
# compute actual padding values for each side
|
85 |
+
pad_top = pad_along_height // 2
|
86 |
+
pad_bottom = pad_along_height - pad_top
|
87 |
+
pad_left = pad_along_width // 2
|
88 |
+
pad_right = pad_along_width - pad_left
|
89 |
+
|
90 |
+
# apply mirror padding
|
91 |
+
if nhwc:
|
92 |
+
x = torch.transpose(torch.transpose(x, 2, 3), 1, 2) # NHWC to NCHW
|
93 |
+
|
94 |
+
# downscaling performed by 1-d convolution
|
95 |
+
x = F.pad(x, (0, 0, pad_top, pad_bottom), self.padding)
|
96 |
+
x = F.conv2d(input=x, weight=filters1, stride=(stride, 1), groups=3)
|
97 |
+
if clip_round:
|
98 |
+
x = torch.clamp(torch.round(x), 0.0, 255.)
|
99 |
+
|
100 |
+
x = F.pad(x, (pad_left, pad_right, 0, 0), self.padding)
|
101 |
+
x = F.conv2d(input=x, weight=filters2, stride=(1, stride), groups=3)
|
102 |
+
if clip_round:
|
103 |
+
x = torch.clamp(torch.round(x), 0.0, 255.)
|
104 |
+
|
105 |
+
if nhwc:
|
106 |
+
x = torch.transpose(torch.transpose(x, 1, 3), 1, 2)
|
107 |
+
if byte_output:
|
108 |
+
return x.type('torch.ByteTensor'.format(self.cuda))
|
109 |
+
else:
|
110 |
+
return x
|
datasets/ffhq_degradation_dataset.py
ADDED
@@ -0,0 +1,235 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import math
|
3 |
+
import numpy as np
|
4 |
+
import os.path as osp
|
5 |
+
import torch
|
6 |
+
import torch.utils.data as data
|
7 |
+
from basicsr.data import degradations as degradations
|
8 |
+
from basicsr.data.data_util import paths_from_folder
|
9 |
+
from basicsr.data.transforms import augment
|
10 |
+
from basicsr.utils import FileClient, get_root_logger, imfrombytes, img2tensor
|
11 |
+
from basicsr.utils.registry import DATASET_REGISTRY
|
12 |
+
from torchvision.transforms.functional import (adjust_brightness, adjust_contrast, adjust_hue, adjust_saturation,
|
13 |
+
normalize)
|
14 |
+
|
15 |
+
|
16 |
+
@DATASET_REGISTRY.register()
|
17 |
+
class FFHQDegradationDataset(data.Dataset):
|
18 |
+
"""FFHQ dataset for GFPGAN.
|
19 |
+
It reads high resolution images, and then generate low-quality (LQ) images on-the-fly.
|
20 |
+
Args:
|
21 |
+
opt (dict): Config for train datasets. It contains the following keys:
|
22 |
+
dataroot_gt (str): Data root path for gt.
|
23 |
+
io_backend (dict): IO backend type and other kwarg.
|
24 |
+
mean (list | tuple): Image mean.
|
25 |
+
std (list | tuple): Image std.
|
26 |
+
use_hflip (bool): Whether to horizontally flip.
|
27 |
+
Please see more options in the codes.
|
28 |
+
"""
|
29 |
+
|
30 |
+
def __init__(self, opt):
|
31 |
+
super(FFHQDegradationDataset, self).__init__()
|
32 |
+
self.opt = opt
|
33 |
+
# file client (io backend)
|
34 |
+
self.file_client = None
|
35 |
+
self.io_backend_opt = opt['io_backend']
|
36 |
+
|
37 |
+
self.gt_folder = opt['dataroot_gt']
|
38 |
+
self.mean = opt['mean']
|
39 |
+
self.std = opt['std']
|
40 |
+
self.out_size = opt['out_size']
|
41 |
+
|
42 |
+
self.crop_components = opt.get('crop_components', False) # facial components
|
43 |
+
self.eye_enlarge_ratio = opt.get('eye_enlarge_ratio', 1) # whether enlarge eye regions
|
44 |
+
|
45 |
+
if self.crop_components:
|
46 |
+
# load component list from a pre-process pth files
|
47 |
+
self.components_list = torch.load(opt.get('component_path'))
|
48 |
+
|
49 |
+
# file client (lmdb io backend)
|
50 |
+
if self.io_backend_opt['type'] == 'lmdb':
|
51 |
+
self.io_backend_opt['db_paths'] = self.gt_folder
|
52 |
+
if not self.gt_folder.endswith('.lmdb'):
|
53 |
+
raise ValueError(f"'dataroot_gt' should end with '.lmdb', but received {self.gt_folder}")
|
54 |
+
with open(osp.join(self.gt_folder, 'meta_info.txt')) as fin:
|
55 |
+
self.paths = [line.split('.')[0] for line in fin]
|
56 |
+
else:
|
57 |
+
# disk backend: scan file list from a folder
|
58 |
+
self.paths = paths_from_folder(self.gt_folder)
|
59 |
+
|
60 |
+
# degradation configurations
|
61 |
+
self.blur_kernel_size = opt['blur_kernel_size']
|
62 |
+
self.kernel_list = opt['kernel_list']
|
63 |
+
self.kernel_prob = opt['kernel_prob']
|
64 |
+
self.blur_sigma = opt['blur_sigma']
|
65 |
+
self.downsample_range = opt['downsample_range']
|
66 |
+
self.noise_range = opt['noise_range']
|
67 |
+
self.jpeg_range = opt['jpeg_range']
|
68 |
+
|
69 |
+
# color jitter
|
70 |
+
self.color_jitter_prob = opt.get('color_jitter_prob')
|
71 |
+
self.color_jitter_pt_prob = opt.get('color_jitter_pt_prob')
|
72 |
+
self.color_jitter_shift = opt.get('color_jitter_shift', 20)
|
73 |
+
# to gray
|
74 |
+
self.gray_prob = opt.get('gray_prob')
|
75 |
+
|
76 |
+
logger = get_root_logger()
|
77 |
+
logger.info(f'Blur: blur_kernel_size {self.blur_kernel_size}, sigma: [{", ".join(map(str, self.blur_sigma))}]')
|
78 |
+
logger.info(f'Downsample: downsample_range [{", ".join(map(str, self.downsample_range))}]')
|
79 |
+
logger.info(f'Noise: [{", ".join(map(str, self.noise_range))}]')
|
80 |
+
logger.info(f'JPEG compression: [{", ".join(map(str, self.jpeg_range))}]')
|
81 |
+
|
82 |
+
if self.color_jitter_prob is not None:
|
83 |
+
logger.info(f'Use random color jitter. Prob: {self.color_jitter_prob}, shift: {self.color_jitter_shift}')
|
84 |
+
if self.gray_prob is not None:
|
85 |
+
logger.info(f'Use random gray. Prob: {self.gray_prob}')
|
86 |
+
self.color_jitter_shift /= 255.
|
87 |
+
|
88 |
+
@staticmethod
|
89 |
+
def color_jitter(img, shift):
|
90 |
+
"""jitter color: randomly jitter the RGB values, in numpy formats"""
|
91 |
+
jitter_val = np.random.uniform(-shift, shift, 3).astype(np.float32)
|
92 |
+
img = img + jitter_val
|
93 |
+
img = np.clip(img, 0, 1)
|
94 |
+
return img
|
95 |
+
|
96 |
+
@staticmethod
|
97 |
+
def color_jitter_pt(img, brightness, contrast, saturation, hue):
|
98 |
+
"""jitter color: randomly jitter the brightness, contrast, saturation, and hue, in torch Tensor formats"""
|
99 |
+
fn_idx = torch.randperm(4)
|
100 |
+
for fn_id in fn_idx:
|
101 |
+
if fn_id == 0 and brightness is not None:
|
102 |
+
brightness_factor = torch.tensor(1.0).uniform_(brightness[0], brightness[1]).item()
|
103 |
+
img = adjust_brightness(img, brightness_factor)
|
104 |
+
|
105 |
+
if fn_id == 1 and contrast is not None:
|
106 |
+
contrast_factor = torch.tensor(1.0).uniform_(contrast[0], contrast[1]).item()
|
107 |
+
img = adjust_contrast(img, contrast_factor)
|
108 |
+
|
109 |
+
if fn_id == 2 and saturation is not None:
|
110 |
+
saturation_factor = torch.tensor(1.0).uniform_(saturation[0], saturation[1]).item()
|
111 |
+
img = adjust_saturation(img, saturation_factor)
|
112 |
+
|
113 |
+
if fn_id == 3 and hue is not None:
|
114 |
+
hue_factor = torch.tensor(1.0).uniform_(hue[0], hue[1]).item()
|
115 |
+
img = adjust_hue(img, hue_factor)
|
116 |
+
return img
|
117 |
+
|
118 |
+
def get_component_coordinates(self, index, status):
|
119 |
+
"""Get facial component (left_eye, right_eye, mouth) coordinates from a pre-loaded pth file"""
|
120 |
+
components_bbox = self.components_list[f'{index:08d}']
|
121 |
+
if status[0]: # hflip
|
122 |
+
# exchange right and left eye
|
123 |
+
tmp = components_bbox['left_eye']
|
124 |
+
components_bbox['left_eye'] = components_bbox['right_eye']
|
125 |
+
components_bbox['right_eye'] = tmp
|
126 |
+
# modify the width coordinate
|
127 |
+
components_bbox['left_eye'][0] = self.out_size - components_bbox['left_eye'][0]
|
128 |
+
components_bbox['right_eye'][0] = self.out_size - components_bbox['right_eye'][0]
|
129 |
+
components_bbox['mouth'][0] = self.out_size - components_bbox['mouth'][0]
|
130 |
+
|
131 |
+
# get coordinates
|
132 |
+
locations = []
|
133 |
+
for part in ['left_eye', 'right_eye', 'mouth']:
|
134 |
+
mean = components_bbox[part][0:2]
|
135 |
+
mean[0] = mean[0] * 2 + 128 ########
|
136 |
+
mean[1] = mean[1] * 2 + 128 ########
|
137 |
+
half_len = components_bbox[part][2] * 2 ########
|
138 |
+
if 'eye' in part:
|
139 |
+
half_len *= self.eye_enlarge_ratio
|
140 |
+
loc = np.hstack((mean - half_len + 1, mean + half_len))
|
141 |
+
loc = torch.from_numpy(loc).float()
|
142 |
+
locations.append(loc)
|
143 |
+
return locations
|
144 |
+
|
145 |
+
def __getitem__(self, index):
|
146 |
+
if self.file_client is None:
|
147 |
+
self.file_client = FileClient(self.io_backend_opt.pop('type'), **self.io_backend_opt)
|
148 |
+
|
149 |
+
# load gt image
|
150 |
+
# Shape: (h, w, c); channel order: BGR; image range: [0, 1], float32.
|
151 |
+
gt_path = self.paths[index]
|
152 |
+
img_bytes = self.file_client.get(gt_path)
|
153 |
+
img_gt = imfrombytes(img_bytes, float32=True)
|
154 |
+
|
155 |
+
# random horizontal flip
|
156 |
+
img_gt, status = augment(img_gt, hflip=self.opt['use_hflip'], rotation=False, return_status=True)
|
157 |
+
h, w, _ = img_gt.shape
|
158 |
+
|
159 |
+
# get facial component coordinates
|
160 |
+
if self.crop_components:
|
161 |
+
locations = self.get_component_coordinates(index, status)
|
162 |
+
loc_left_eye, loc_right_eye, loc_mouth = locations
|
163 |
+
|
164 |
+
# ------------------------ generate lq image ------------------------ #
|
165 |
+
# blur
|
166 |
+
kernel = degradations.random_mixed_kernels(
|
167 |
+
self.kernel_list,
|
168 |
+
self.kernel_prob,
|
169 |
+
self.blur_kernel_size,
|
170 |
+
self.blur_sigma,
|
171 |
+
self.blur_sigma, [-math.pi, math.pi],
|
172 |
+
noise_range=None)
|
173 |
+
img_lq = cv2.filter2D(img_gt, -1, kernel)
|
174 |
+
# downsample
|
175 |
+
scale = np.random.uniform(self.downsample_range[0], self.downsample_range[1])
|
176 |
+
img_lq = cv2.resize(img_lq, (int(w // scale), int(h // scale)), interpolation=cv2.INTER_LINEAR)
|
177 |
+
# noise
|
178 |
+
if self.noise_range is not None:
|
179 |
+
img_lq = degradations.random_add_gaussian_noise(img_lq, self.noise_range)
|
180 |
+
# jpeg compression
|
181 |
+
if self.jpeg_range is not None:
|
182 |
+
img_lq = degradations.random_add_jpg_compression(img_lq, self.jpeg_range)
|
183 |
+
|
184 |
+
# resize to original size
|
185 |
+
img_lq = cv2.resize(img_lq, (int(w // self.opt['scale']), int(h // self.opt['scale'])), interpolation=cv2.INTER_LINEAR)
|
186 |
+
|
187 |
+
# random color jitter (only for lq)
|
188 |
+
if self.color_jitter_prob is not None and (np.random.uniform() < self.color_jitter_prob):
|
189 |
+
img_lq = self.color_jitter(img_lq, self.color_jitter_shift)
|
190 |
+
# random to gray (only for lq)
|
191 |
+
if self.gray_prob and np.random.uniform() < self.gray_prob:
|
192 |
+
img_lq = cv2.cvtColor(img_lq, cv2.COLOR_BGR2GRAY)
|
193 |
+
img_lq = np.tile(img_lq[:, :, None], [1, 1, 3])
|
194 |
+
if self.opt.get('gt_gray'): # whether convert GT to gray images
|
195 |
+
img_gt = cv2.cvtColor(img_gt, cv2.COLOR_BGR2GRAY)
|
196 |
+
img_gt = np.tile(img_gt[:, :, None], [1, 1, 3]) # repeat the color channels
|
197 |
+
|
198 |
+
# BGR to RGB, HWC to CHW, numpy to tensor
|
199 |
+
#img_gt, img_lq = img2tensor([img_gt, img_lq], bgr2rgb=True, float32=True)
|
200 |
+
img_gt = img2tensor(img_gt, bgr2rgb=True, float32=True)
|
201 |
+
img_lq = img2tensor(img_lq, bgr2rgb=True, float32=True)
|
202 |
+
|
203 |
+
# random color jitter (pytorch version) (only for lq)
|
204 |
+
if self.color_jitter_pt_prob is not None and (np.random.uniform() < self.color_jitter_pt_prob):
|
205 |
+
brightness = self.opt.get('brightness', (0.5, 1.5))
|
206 |
+
contrast = self.opt.get('contrast', (0.5, 1.5))
|
207 |
+
saturation = self.opt.get('saturation', (0, 1.5))
|
208 |
+
hue = self.opt.get('hue', (-0.1, 0.1))
|
209 |
+
img_lq = self.color_jitter_pt(img_lq, brightness, contrast, saturation, hue)
|
210 |
+
|
211 |
+
# round and clip
|
212 |
+
img_lq = torch.clamp((img_lq * 255.0).round(), 0, 255) / 255.
|
213 |
+
|
214 |
+
# normalize
|
215 |
+
normalize(img_gt, self.mean, self.std, inplace=True)
|
216 |
+
normalize(img_lq, self.mean, self.std, inplace=True)
|
217 |
+
|
218 |
+
'''
|
219 |
+
if self.crop_components:
|
220 |
+
return_dict = {
|
221 |
+
'lq': img_lq,
|
222 |
+
'gt': img_gt,
|
223 |
+
'gt_path': gt_path,
|
224 |
+
'loc_left_eye': loc_left_eye,
|
225 |
+
'loc_right_eye': loc_right_eye,
|
226 |
+
'loc_mouth': loc_mouth
|
227 |
+
}
|
228 |
+
return return_dict
|
229 |
+
else:
|
230 |
+
return {'lq': img_lq, 'gt': img_gt, 'gt_path': gt_path}
|
231 |
+
'''
|
232 |
+
return img_lq, img_gt
|
233 |
+
|
234 |
+
def __len__(self):
|
235 |
+
return len(self.paths)
|
datasets/gt_res_dataset.py
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/python
|
2 |
+
# encoding: utf-8
|
3 |
+
import os
|
4 |
+
from torch.utils.data import Dataset
|
5 |
+
from PIL import Image
|
6 |
+
|
7 |
+
|
8 |
+
class GTResDataset(Dataset):
|
9 |
+
|
10 |
+
def __init__(self, root_path, gt_dir=None, transform=None, transform_train=None):
|
11 |
+
self.pairs = []
|
12 |
+
for f in os.listdir(root_path):
|
13 |
+
image_path = os.path.join(root_path, f)
|
14 |
+
gt_path = os.path.join(gt_dir, f)
|
15 |
+
if f.endswith(".jpg") or f.endswith(".png"):
|
16 |
+
self.pairs.append([image_path, gt_path.replace('.png', '.jpg'), None])
|
17 |
+
self.transform = transform
|
18 |
+
self.transform_train = transform_train
|
19 |
+
|
20 |
+
def __len__(self):
|
21 |
+
return len(self.pairs)
|
22 |
+
|
23 |
+
def __getitem__(self, index):
|
24 |
+
from_path, to_path, _ = self.pairs[index]
|
25 |
+
from_im = Image.open(from_path).convert('RGB')
|
26 |
+
to_im = Image.open(to_path).convert('RGB')
|
27 |
+
|
28 |
+
if self.transform:
|
29 |
+
to_im = self.transform(to_im)
|
30 |
+
from_im = self.transform(from_im)
|
31 |
+
|
32 |
+
return from_im, to_im
|
datasets/images_dataset.py
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from torch.utils.data import Dataset
|
2 |
+
from PIL import Image
|
3 |
+
from utils import data_utils
|
4 |
+
|
5 |
+
|
6 |
+
class ImagesDataset(Dataset):
|
7 |
+
|
8 |
+
def __init__(self, source_root, target_root, opts, target_transform=None, source_transform=None):
|
9 |
+
self.source_paths = sorted(data_utils.make_dataset(source_root))
|
10 |
+
self.target_paths = sorted(data_utils.make_dataset(target_root))
|
11 |
+
self.source_transform = source_transform
|
12 |
+
self.target_transform = target_transform
|
13 |
+
self.opts = opts
|
14 |
+
|
15 |
+
def __len__(self):
|
16 |
+
return len(self.source_paths)
|
17 |
+
|
18 |
+
def __getitem__(self, index):
|
19 |
+
from_path = self.source_paths[index]
|
20 |
+
from_im = Image.open(from_path)
|
21 |
+
from_im = from_im.convert('RGB') if self.opts.label_nc == 0 else from_im.convert('L')
|
22 |
+
|
23 |
+
to_path = self.target_paths[index]
|
24 |
+
to_im = Image.open(to_path).convert('RGB')
|
25 |
+
if self.target_transform:
|
26 |
+
to_im = self.target_transform(to_im)
|
27 |
+
|
28 |
+
if self.source_transform:
|
29 |
+
from_im = self.source_transform(from_im)
|
30 |
+
else:
|
31 |
+
from_im = to_im
|
32 |
+
|
33 |
+
return from_im, to_im
|
datasets/inference_dataset.py
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from torch.utils.data import Dataset
|
2 |
+
from PIL import Image
|
3 |
+
from utils import data_utils
|
4 |
+
|
5 |
+
|
6 |
+
class InferenceDataset(Dataset):
|
7 |
+
|
8 |
+
def __init__(self, root, opts, transform=None):
|
9 |
+
self.paths = sorted(data_utils.make_dataset(root))
|
10 |
+
self.transform = transform
|
11 |
+
self.opts = opts
|
12 |
+
|
13 |
+
def __len__(self):
|
14 |
+
return len(self.paths)
|
15 |
+
|
16 |
+
def __getitem__(self, index):
|
17 |
+
from_path = self.paths[index]
|
18 |
+
from_im = Image.open(from_path)
|
19 |
+
from_im = from_im.convert('RGB') if self.opts.label_nc == 0 else from_im.convert('L')
|
20 |
+
if self.transform:
|
21 |
+
from_im = self.transform(from_im)
|
22 |
+
return from_im
|