Spaces:
Running
on
T4
Running
on
T4
import datetime | |
import os | |
import numpy as np | |
import wandb | |
from utils import common | |
class WBLogger: | |
def __init__(self, opts): | |
wandb_run_name = os.path.basename(opts.exp_dir) | |
wandb.init(project="pixel2style2pixel", config=vars(opts), name=wandb_run_name) | |
def log_best_model(): | |
wandb.run.summary["best-model-save-time"] = datetime.datetime.now() | |
def log(prefix, metrics_dict, global_step): | |
log_dict = {f'{prefix}_{key}': value for key, value in metrics_dict.items()} | |
log_dict["global_step"] = global_step | |
wandb.log(log_dict) | |
def log_dataset_wandb(dataset, dataset_name, n_images=16): | |
idxs = np.random.choice(a=range(len(dataset)), size=n_images, replace=False) | |
data = [wandb.Image(dataset.source_paths[idx]) for idx in idxs] | |
wandb.log({f"{dataset_name} Data Samples": data}) | |
def log_images_to_wandb(x, y, y_hat, id_logs, prefix, step, opts): | |
im_data = [] | |
column_names = ["Source", "Target", "Output"] | |
if id_logs is not None: | |
column_names.append("ID Diff Output to Target") | |
for i in range(len(x)): | |
cur_im_data = [ | |
wandb.Image(common.log_input_image(x[i], opts)), | |
wandb.Image(common.tensor2im(y[i])), | |
wandb.Image(common.tensor2im(y_hat[i])), | |
] | |
if id_logs is not None: | |
cur_im_data.append(id_logs[i]["diff_target"]) | |
im_data.append(cur_im_data) | |
outputs_table = wandb.Table(data=im_data, columns=column_names) | |
wandb.log({f"{prefix.title()} Step {step} Output Samples": outputs_table}) | |