Spaces:
Running
on
Zero
Running
on
Zero
from typing import Any, Dict, Optional, Tuple | |
import torch | |
import torch.fft as fft | |
from diffusers.utils import is_torch_version | |
from diffusers.models.unet_2d_condition import logger as logger2d | |
from diffusers.models.unet_3d_condition import logger as logger3d | |
def isinstance_str(x: object, cls_name: str): | |
""" | |
Checks whether x has any class *named* cls_name in its ancestry. | |
Doesn't require access to the class's implementation. | |
Useful for patching! | |
""" | |
for _cls in x.__class__.__mro__: | |
if _cls.__name__ == cls_name: | |
return True | |
return False | |
def Fourier_filter(x_in, threshold, scale): | |
""" | |
Updated Fourier filter based on: | |
https://github.com/huggingface/diffusers/pull/5164#issuecomment-1732638706 | |
""" | |
x = x_in | |
B, C, H, W = x.shape | |
# Non-power of 2 images must be float32 | |
if (W & (W - 1)) != 0 or (H & (H - 1)) != 0: | |
x = x.to(dtype=torch.float32) | |
# FFT | |
x_freq = fft.fftn(x, dim=(-2, -1)) | |
x_freq = fft.fftshift(x_freq, dim=(-2, -1)) | |
B, C, H, W = x_freq.shape | |
mask = torch.ones((B, C, H, W), device=x.device) | |
crow, ccol = H // 2, W // 2 | |
mask[..., crow - threshold : crow + threshold, ccol - threshold : ccol + threshold] = scale | |
x_freq = x_freq * mask | |
# IFFT | |
x_freq = fft.ifftshift(x_freq, dim=(-2, -1)) | |
x_filtered = fft.ifftn(x_freq, dim=(-2, -1)).real | |
return x_filtered.to(dtype=x_in.dtype) | |
def register_upblock2d(model): | |
""" | |
Register UpBlock2D for UNet2DCondition. | |
""" | |
def up_forward(self): | |
def forward( | |
hidden_states, | |
res_hidden_states_tuple, | |
temb=None, | |
upsample_size=None | |
): | |
logger2d.debug(f"in upblock2d, hidden states shape: {hidden_states.shape}") | |
for resnet in self.resnets: | |
# pop res hidden states | |
res_hidden_states = res_hidden_states_tuple[-1] | |
res_hidden_states_tuple = res_hidden_states_tuple[:-1] | |
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) | |
if self.training and self.gradient_checkpointing: | |
def create_custom_forward(module): | |
def custom_forward(*inputs): | |
return module(*inputs) | |
return custom_forward | |
if is_torch_version(">=", "1.11.0"): | |
hidden_states = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(resnet), hidden_states, temb, use_reentrant=False | |
) | |
else: | |
hidden_states = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(resnet), hidden_states, temb | |
) | |
else: | |
hidden_states = resnet(hidden_states, temb) | |
if self.upsamplers is not None: | |
for upsampler in self.upsamplers: | |
hidden_states = upsampler(hidden_states, upsample_size) | |
return hidden_states | |
return forward | |
for i, upsample_block in enumerate(model.unet.up_blocks): | |
if isinstance_str(upsample_block, "UpBlock2D"): | |
upsample_block.forward = up_forward(upsample_block) | |
def register_free_upblock2d(model, b1=1.2, b2=1.4, s1=0.9, s2=0.2): | |
""" | |
Register UpBlock2D with FreeU for UNet2DCondition. | |
""" | |
def up_forward(self): | |
def forward( | |
hidden_states, | |
res_hidden_states_tuple, | |
temb=None, | |
upsample_size=None | |
): | |
logger2d.debug(f"in free upblock2d, hidden states shape: {hidden_states.shape}") | |
for resnet in self.resnets: | |
# pop res hidden states | |
res_hidden_states = res_hidden_states_tuple[-1] | |
res_hidden_states_tuple = res_hidden_states_tuple[:-1] | |
# --------------- FreeU code ----------------------- | |
# Only operate on the first two stages | |
if hidden_states.shape[1] == 1280: | |
hidden_mean = hidden_states.mean(1).unsqueeze(1) | |
B = hidden_mean.shape[0] | |
hidden_max, _ = torch.max(hidden_mean.view(B, -1), dim=-1, keepdim=True) | |
hidden_min, _ = torch.min(hidden_mean.view(B, -1), dim=-1, keepdim=True) | |
hidden_mean = (hidden_mean - hidden_min.unsqueeze(2).unsqueeze(3)) / (hidden_max - hidden_min).unsqueeze(2).unsqueeze(3) | |
hidden_states[:,:640] = hidden_states[:,:640] * ((self.b1 - 1 ) * hidden_mean + 1) | |
#hidden_states[:,:640] = hidden_states[:,:640] * self.b1 | |
res_hidden_states = Fourier_filter(res_hidden_states, threshold=1, scale=self.s1) | |
if hidden_states.shape[1] == 640: | |
hidden_mean = hidden_states.mean(1).unsqueeze(1) | |
B = hidden_mean.shape[0] | |
hidden_max, _ = torch.max(hidden_mean.view(B, -1), dim=-1, keepdim=True) | |
hidden_min, _ = torch.min(hidden_mean.view(B, -1), dim=-1, keepdim=True) | |
hidden_mean = (hidden_mean - hidden_min.unsqueeze(2).unsqueeze(3)) / (hidden_max - hidden_min).unsqueeze(2).unsqueeze(3) | |
hidden_states[:,:320] = hidden_states[:,:320] * ((self.b2 - 1 ) * hidden_mean + 1) | |
#hidden_states[:,:320] = hidden_states[:,:320] * self.b2 | |
res_hidden_states = Fourier_filter(res_hidden_states, threshold=1, scale=self.s2) | |
# --------------------------------------------------------- | |
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) | |
if self.training and self.gradient_checkpointing: | |
def create_custom_forward(module): | |
def custom_forward(*inputs): | |
return module(*inputs) | |
return custom_forward | |
if is_torch_version(">=", "1.11.0"): | |
hidden_states = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(resnet), hidden_states, temb, use_reentrant=False | |
) | |
else: | |
hidden_states = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(resnet), hidden_states, temb | |
) | |
else: | |
hidden_states = resnet(hidden_states, temb) | |
if self.upsamplers is not None: | |
for upsampler in self.upsamplers: | |
hidden_states = upsampler(hidden_states, upsample_size) | |
return hidden_states | |
return forward | |
for i, upsample_block in enumerate(model.unet.up_blocks): | |
if isinstance_str(upsample_block, "UpBlock2D"): | |
upsample_block.forward = up_forward(upsample_block) | |
setattr(upsample_block, 'b1', b1) | |
setattr(upsample_block, 'b2', b2) | |
setattr(upsample_block, 's1', s1) | |
setattr(upsample_block, 's2', s2) | |
def register_crossattn_upblock2d(model): | |
""" | |
Register CrossAttn UpBlock2D for UNet2DCondition. | |
""" | |
def up_forward(self): | |
def forward( | |
hidden_states: torch.FloatTensor, | |
res_hidden_states_tuple: Tuple[torch.FloatTensor, ...], | |
temb: Optional[torch.FloatTensor] = None, | |
encoder_hidden_states: Optional[torch.FloatTensor] = None, | |
cross_attention_kwargs: Optional[Dict[str, Any]] = None, | |
upsample_size: Optional[int] = None, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
encoder_attention_mask: Optional[torch.FloatTensor] = None, | |
): | |
logger2d.debug(f"in crossatten upblock2d, hidden states shape: {hidden_states.shape}") | |
#lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0 | |
for resnet, attn in zip(self.resnets, self.attentions): | |
# pop res hidden states | |
res_hidden_states = res_hidden_states_tuple[-1] | |
res_hidden_states_tuple = res_hidden_states_tuple[:-1] | |
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) | |
if self.training and self.gradient_checkpointing: | |
def create_custom_forward(module, return_dict=None): | |
def custom_forward(*inputs): | |
if return_dict is not None: | |
return module(*inputs, return_dict=return_dict) | |
else: | |
return module(*inputs) | |
return custom_forward | |
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} | |
hidden_states = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(resnet), | |
hidden_states, | |
temb, | |
**ckpt_kwargs, | |
) | |
hidden_states = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(attn, return_dict=False), | |
hidden_states, | |
encoder_hidden_states, | |
None, # timestep | |
None, # class_labels | |
cross_attention_kwargs, | |
attention_mask, | |
encoder_attention_mask, | |
**ckpt_kwargs, | |
)[0] | |
else: | |
hidden_states = resnet(hidden_states, temb) | |
hidden_states = attn( | |
hidden_states, | |
encoder_hidden_states=encoder_hidden_states, | |
cross_attention_kwargs=cross_attention_kwargs, | |
attention_mask=attention_mask, | |
encoder_attention_mask=encoder_attention_mask, | |
return_dict=False, | |
)[0] | |
if self.upsamplers is not None: | |
for upsampler in self.upsamplers: | |
hidden_states = upsampler(hidden_states, upsample_size) | |
return hidden_states | |
return forward | |
for i, upsample_block in enumerate(model.unet.up_blocks): | |
if isinstance_str(upsample_block, "CrossAttnUpBlock2D"): | |
upsample_block.forward = up_forward(upsample_block) | |
def register_free_crossattn_upblock2d(model, b1=1.2, b2=1.4, s1=0.9, s2=0.2): | |
""" | |
Register CrossAttn UpBlock2D with FreeU for UNet2DCondition. | |
""" | |
def up_forward(self): | |
def forward( | |
hidden_states: torch.FloatTensor, | |
res_hidden_states_tuple: Tuple[torch.FloatTensor, ...], | |
temb: Optional[torch.FloatTensor] = None, | |
encoder_hidden_states: Optional[torch.FloatTensor] = None, | |
cross_attention_kwargs: Optional[Dict[str, Any]] = None, | |
upsample_size: Optional[int] = None, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
encoder_attention_mask: Optional[torch.FloatTensor] = None, | |
): | |
logger2d.debug(f"in free crossatten upblock2d, hidden states shape: {hidden_states.shape}") | |
#lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0 | |
for resnet, attn in zip(self.resnets, self.attentions): | |
# pop res hidden states | |
res_hidden_states = res_hidden_states_tuple[-1] | |
res_hidden_states_tuple = res_hidden_states_tuple[:-1] | |
# --------------- FreeU code ----------------------- | |
# Only operate on the first two stages | |
if hidden_states.shape[1] == 1280: | |
hidden_mean = hidden_states.mean(1).unsqueeze(1) | |
B = hidden_mean.shape[0] | |
hidden_max, _ = torch.max(hidden_mean.view(B, -1), dim=-1, keepdim=True) | |
hidden_min, _ = torch.min(hidden_mean.view(B, -1), dim=-1, keepdim=True) | |
hidden_mean = (hidden_mean - hidden_min.unsqueeze(2).unsqueeze(3)) / (hidden_max - hidden_min).unsqueeze(2).unsqueeze(3) | |
hidden_states[:,:640] = hidden_states[:,:640] * ((self.b1 - 1 ) * hidden_mean + 1) | |
#hidden_states[:,:640] = hidden_states[:,:640] * self.b1 | |
res_hidden_states = Fourier_filter(res_hidden_states, threshold=1, scale=self.s1) | |
if hidden_states.shape[1] == 640: | |
hidden_mean = hidden_states.mean(1).unsqueeze(1) | |
B = hidden_mean.shape[0] | |
hidden_max, _ = torch.max(hidden_mean.view(B, -1), dim=-1, keepdim=True) | |
hidden_min, _ = torch.min(hidden_mean.view(B, -1), dim=-1, keepdim=True) | |
hidden_mean = (hidden_mean - hidden_min.unsqueeze(2).unsqueeze(3)) / (hidden_max - hidden_min).unsqueeze(2).unsqueeze(3) | |
hidden_states[:,:320] = hidden_states[:,:320] * ((self.b2 - 1 ) * hidden_mean + 1) | |
#hidden_states[:,:320] = hidden_states[:,:320] * self.b2 | |
res_hidden_states = Fourier_filter(res_hidden_states, threshold=1, scale=self.s2) | |
# --------------------------------------------------------- | |
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) | |
if self.training and self.gradient_checkpointing: | |
def create_custom_forward(module, return_dict=None): | |
def custom_forward(*inputs): | |
if return_dict is not None: | |
return module(*inputs, return_dict=return_dict) | |
else: | |
return module(*inputs) | |
return custom_forward | |
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} | |
hidden_states = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(resnet), | |
hidden_states, | |
temb, | |
**ckpt_kwargs, | |
) | |
hidden_states = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(attn, return_dict=False), | |
hidden_states, | |
encoder_hidden_states, | |
None, # timestep | |
None, # class_labels | |
cross_attention_kwargs, | |
attention_mask, | |
encoder_attention_mask, | |
**ckpt_kwargs, | |
)[0] | |
else: | |
hidden_states = resnet(hidden_states, temb) | |
hidden_states = attn( | |
hidden_states, | |
encoder_hidden_states=encoder_hidden_states, | |
cross_attention_kwargs=cross_attention_kwargs, | |
attention_mask=attention_mask, | |
encoder_attention_mask=encoder_attention_mask, | |
return_dict=False, | |
)[0] | |
if self.upsamplers is not None: | |
for upsampler in self.upsamplers: | |
hidden_states = upsampler(hidden_states, upsample_size) | |
return hidden_states | |
return forward | |
for i, upsample_block in enumerate(model.unet.up_blocks): | |
if isinstance_str(upsample_block, "CrossAttnUpBlock2D"): | |
upsample_block.forward = up_forward(upsample_block) | |
setattr(upsample_block, 'b1', b1) | |
setattr(upsample_block, 'b2', b2) | |
setattr(upsample_block, 's1', s1) | |
setattr(upsample_block, 's2', s2) | |
def apply_freeu(pipe, b1=1.0, b2=1.0, s1=1.0, s2=1.0): | |
register_free_upblock2d(pipe, b1, b2, s1, s2) | |
register_free_crossattn_upblock2d(pipe, b1, b2, s1, s2) |