airplane194's picture
COmmit
f12d515
import spaces
import gradio as gr
import numpy as np
import random
import python
import torch
import os
from huggingface_hub import hf_hub_download
from diffusers import DiffusionPipeline, FlowMatchEulerDiscreteScheduler, AutoencoderKL
from transformers import CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5TokenizerFast
from live_preview_helpers import calculate_shift, retrieve_timesteps, flux_pipe_call_that_returns_an_iterable_of_images
from peft import PeftModel
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"
token = os.getenv("HF_TKN")
# good_vae = AutoencoderKL.from_pretrained("black-forest-labs/FLUX.1-dev", subfolder="vae", torch_dtype=dtype, token=token).to(device)
# pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=dtype, token=token).to(device)
torch.cuda.empty_cache()
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048 # not used anymore
# Bind the custom method
# pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe)
# python.model_loading()
@spaces.GPU()
def infer(prompt, seed=42, randomize_seed=True, aspect_ratio="4:3 landscape 1152x896", lora_weight="lora_weight_rank_32_alpha_32.safetensors",
guidance_scale=3.5, num_inference_steps=28, progress=gr.Progress(track_tqdm=True)):
# Randomize seed if requested
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
# Load the selected LoRA weight and fuse it
lora_weight_path = os.path.join("loras", lora_weight)
# pipe.load_lora_weights(weight_path)
# pipe.fuse_lora()
torch.cuda.empty_cache()
image, seed = python.generate_image(
prompt,
guidance_scale,
aspect_ratio,
seed,
num_inference_steps,
lora_weight,
)
# Generate images
# for img in pipe.flux_pipe_call_that_returns_an_iterable_of_images(
# prompt=prompt,
# guidance_scale=guidance_scale,
# num_inference_steps=num_inference_steps,
# width=width,
# height=height,
# generator=generator,
# output_type="pil",
# good_vae=good_vae,
# ):
# out_img = img
return image,seed
# Examples for the prompt
examples = [
"Photo on a small glass panel. Color. A vintage Autochrome photograph, early 1900s aesthetic depicts four roses in a brown vase with dark background.",
"Photo on a small glass panel. Color. A depiction of trees with orange leaves and a small path.",
]
css = """
#col-container {
margin: 0 auto;
max-width: 520px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(f"""# Text2Autochrome demo!
""")
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=5,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0)
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Advanced Settings", open=True):
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
# Dropdown for aspect ratio selection
aspect_ratio = gr.Dropdown(
label="Aspect Ratio",
choices=["1:1 square 1024x1024", "3:4 portrait 896x1152", "5:8 portrait 832x1216", "9:16 portrait 768x1344", "4:3 landscape 1152x896", "3:2 landscape 1216x832", "16:9 landscape 1344x768"],
value="4:3 landscape 1152x896",
interactive=True,
)
# Dropdown for LoRA weight selection
lora_weight = gr.Dropdown(
label="LoRA Weight",
choices=[
"lora_weight_rank_16_alpha_32_1.safetensors",
"lora_weight_rank_16_alpha_32_2.safetensors",
"lora_weight_rank_32_alpha_32.safetensors",
"lora_weight_rank_32_alpha_64.safetensors",
],
value="lora_weight_rank_16_alpha_32_1.safetensors",
interactive=True,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance Scale",
minimum=1,
maximum=25,
step=0.1,
value=8.5,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=100,
step=1,
value=50,
)
gr.Examples(
examples=examples,
fn=infer,
inputs=[prompt],
outputs=[result, seed],
cache_examples=False
)
gr.on(
triggers=[run_button.click, prompt.submit],
fn=infer,
inputs=[prompt, seed, randomize_seed, aspect_ratio, lora_weight, guidance_scale, num_inference_steps],
outputs=[result, seed]
)
demo.launch()