Spaces:
Sleeping
Sleeping
| import spaces | |
| import gradio as gr | |
| import numpy as np | |
| import random | |
| import python | |
| import torch | |
| import os | |
| from huggingface_hub import hf_hub_download | |
| from diffusers import DiffusionPipeline, FlowMatchEulerDiscreteScheduler, AutoencoderKL | |
| from transformers import CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5TokenizerFast | |
| from live_preview_helpers import calculate_shift, retrieve_timesteps, flux_pipe_call_that_returns_an_iterable_of_images | |
| from peft import PeftModel | |
| dtype = torch.bfloat16 | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| token = os.getenv("HF_TKN") | |
| # good_vae = AutoencoderKL.from_pretrained("black-forest-labs/FLUX.1-dev", subfolder="vae", torch_dtype=dtype, token=token).to(device) | |
| # pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=dtype, token=token).to(device) | |
| torch.cuda.empty_cache() | |
| MAX_SEED = np.iinfo(np.int32).max | |
| MAX_IMAGE_SIZE = 2048 # not used anymore | |
| # Bind the custom method | |
| # pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe) | |
| # python.model_loading() | |
| def infer(prompt, seed=42, randomize_seed=True, aspect_ratio="4:3 landscape 1152x896", lora_weight="lora_weight_rank_32_alpha_32.safetensors", | |
| guidance_scale=3.5, num_inference_steps=28, progress=gr.Progress(track_tqdm=True)): | |
| # Randomize seed if requested | |
| if randomize_seed: | |
| seed = random.randint(0, MAX_SEED) | |
| generator = torch.Generator().manual_seed(seed) | |
| # Load the selected LoRA weight and fuse it | |
| lora_weight_path = os.path.join("loras", lora_weight) | |
| # pipe.load_lora_weights(weight_path) | |
| # pipe.fuse_lora() | |
| torch.cuda.empty_cache() | |
| image, seed = python.generate_image( | |
| prompt, | |
| guidance_scale, | |
| aspect_ratio, | |
| seed, | |
| num_inference_steps, | |
| lora_weight, | |
| ) | |
| # Generate images | |
| # for img in pipe.flux_pipe_call_that_returns_an_iterable_of_images( | |
| # prompt=prompt, | |
| # guidance_scale=guidance_scale, | |
| # num_inference_steps=num_inference_steps, | |
| # width=width, | |
| # height=height, | |
| # generator=generator, | |
| # output_type="pil", | |
| # good_vae=good_vae, | |
| # ): | |
| # out_img = img | |
| return image,seed | |
| # Examples for the prompt | |
| examples = [ | |
| "Photo on a small glass panel. Color. A vintage Autochrome photograph, early 1900s aesthetic depicts four roses in a brown vase with dark background.", | |
| "Photo on a small glass panel. Color. A depiction of trees with orange leaves and a small path.", | |
| ] | |
| css = """ | |
| #col-container { | |
| margin: 0 auto; | |
| max-width: 520px; | |
| } | |
| """ | |
| with gr.Blocks(css=css) as demo: | |
| with gr.Column(elem_id="col-container"): | |
| gr.Markdown(f"""# Text2Autochrome demo! | |
| """) | |
| with gr.Row(): | |
| prompt = gr.Text( | |
| label="Prompt", | |
| show_label=False, | |
| max_lines=5, | |
| placeholder="Enter your prompt", | |
| container=False, | |
| ) | |
| run_button = gr.Button("Run", scale=0) | |
| result = gr.Image(label="Result", show_label=False) | |
| with gr.Accordion("Advanced Settings", open=True): | |
| seed = gr.Slider( | |
| label="Seed", | |
| minimum=0, | |
| maximum=MAX_SEED, | |
| step=1, | |
| value=0, | |
| ) | |
| randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
| # Dropdown for aspect ratio selection | |
| aspect_ratio = gr.Dropdown( | |
| label="Aspect Ratio", | |
| choices=["1:1 square 1024x1024", "3:4 portrait 896x1152", "5:8 portrait 832x1216", "9:16 portrait 768x1344", "4:3 landscape 1152x896", "3:2 landscape 1216x832", "16:9 landscape 1344x768"], | |
| value="4:3 landscape 1152x896", | |
| interactive=True, | |
| ) | |
| # Dropdown for LoRA weight selection | |
| lora_weight = gr.Dropdown( | |
| label="LoRA Weight", | |
| choices=[ | |
| "lora_weight_rank_16_alpha_32_1.safetensors", | |
| "lora_weight_rank_16_alpha_32_2.safetensors", | |
| "lora_weight_rank_32_alpha_32.safetensors", | |
| "lora_weight_rank_32_alpha_64.safetensors", | |
| ], | |
| value="lora_weight_rank_16_alpha_32_1.safetensors", | |
| interactive=True, | |
| ) | |
| with gr.Row(): | |
| guidance_scale = gr.Slider( | |
| label="Guidance Scale", | |
| minimum=1, | |
| maximum=25, | |
| step=0.1, | |
| value=8.5, | |
| ) | |
| num_inference_steps = gr.Slider( | |
| label="Number of inference steps", | |
| minimum=1, | |
| maximum=100, | |
| step=1, | |
| value=50, | |
| ) | |
| gr.Examples( | |
| examples=examples, | |
| fn=infer, | |
| inputs=[prompt], | |
| outputs=[result, seed], | |
| cache_examples=False | |
| ) | |
| gr.on( | |
| triggers=[run_button.click, prompt.submit], | |
| fn=infer, | |
| inputs=[prompt, seed, randomize_seed, aspect_ratio, lora_weight, guidance_scale, num_inference_steps], | |
| outputs=[result, seed] | |
| ) | |
| demo.launch() | |