Spaces:
Runtime error
Runtime error
from transformers import TextClassificationPipeline, AutoTokenizer, AutoModelForSequenceClassification | |
import gradio as gr | |
import os | |
class ClassifierInterface: | |
def __init__(self): | |
self.models = [ | |
"Overfit-GM/bert-base-turkish-cased-offensive", | |
"Overfit-GM/bert-base-turkish-uncased-offensive", | |
"Overfit-GM/bert-base-turkish-128k-cased-offensive", | |
"Overfit-GM/bert-base-turkish-128k-uncased-offensive", | |
"Overfit-GM/convbert-base-turkish-mc4-cased-offensive", | |
"Overfit-GM/convbert-base-turkish-mc4-uncased-offensive", | |
"Overfit-GM/convbert-base-turkish-cased-offensive", | |
"Overfit-GM/distilbert-base-turkish-cased-offensive", | |
"Overfit-GM/electra-base-turkish-cased-discriminator-offensive", | |
"Overfit-GM/electra-base-turkish-mc4-cased-discriminator-offensive", | |
"Overfit-GM/electra-base-turkish-mc4-uncased-discriminator-offensive", | |
"Overfit-GM/xlm-roberta-large-turkish-offensive", | |
"Overfit-GM/mdeberta-v3-base-offensive" | |
] | |
self.model_box=[ | |
gr.load(self.models[0], src='models', hf_token=os.environ['API_KEY']), | |
gr.load(self.models[1], src='models', hf_token=os.environ['API_KEY']), | |
gr.load(self.models[2], src='models', hf_token=os.environ['API_KEY']), | |
gr.load(self.models[3], src='models', hf_token=os.environ['API_KEY']), | |
gr.load(self.models[4], src='models', hf_token=os.environ['API_KEY']), | |
gr.load(self.models[5], src='models', hf_token=os.environ['API_KEY']), | |
gr.load(self.models[6], src='models', hf_token=os.environ['API_KEY']), | |
gr.load(self.models[7], src='models', hf_token=os.environ['API_KEY']), | |
gr.load(self.models[8], src='models', hf_token=os.environ['API_KEY']), | |
gr.load(self.models[9], src='models', hf_token=os.environ['API_KEY']), | |
gr.load(self.models[10], src='models', hf_token=os.environ['API_KEY']), | |
gr.load(self.models[11], src='models', hf_token=os.environ['API_KEY']), | |
gr.load(self.models[12], src='models', hf_token=os.environ['API_KEY']) | |
] | |
def sentiment_analysis(self, text, model_choice): | |
model = self.model_box[model_choice] | |
output = model(text) | |
return output | |
def __call__(self): | |
with gr.Blocks() as classifier_interface: | |
gr.HTML("""<h1 style="font-weight:600;font-size:50;margin-top:4px;margin-bottom:4px;text-align:center;">No Offense Classifier</h1></div>""") | |
with gr.Row(): | |
with gr.Column(): | |
model_choice = gr.Dropdown(label="Select Model", choices=[m for m in self.models], type="index", interactive=True) | |
input_text = gr.Textbox(label="Input", placeholder="senin ben amk") | |
the_button = gr.Button(label="Run") | |
with gr.Column(): | |
output_window = gr.Label(num_top_classes=5) | |
the_button.click(self.sentiment_analysis, inputs=[input_text, model_choice], outputs=[output_window]) | |
examples = gr.Examples(examples=["bu adamların ülkesine dönmesi lazım", "adam olsan oraya gitmezdin"], | |
inputs=[input_text]) | |
return classifier_interface | |