echarlaix's picture
echarlaix HF staff
add openvino tag if not already
a3e2f44
raw
history blame
10.8 kB
import os
import shutil
import gradio as gr
from huggingface_hub import HfApi, whoami, ModelCard, model_info
from gradio_huggingfacehub_search import HuggingfaceHubSearch
from textwrap import dedent
from pathlib import Path
from tempfile import TemporaryDirectory
from huggingface_hub.file_download import repo_folder_name
from optimum.exporters import TasksManager
from optimum.intel.utils.modeling_utils import _find_files_matching_pattern
from optimum.intel import (
OVModelForAudioClassification,
OVModelForCausalLM,
OVModelForFeatureExtraction,
OVModelForImageClassification,
OVModelForMaskedLM,
OVModelForQuestionAnswering,
OVModelForSeq2SeqLM,
OVModelForSequenceClassification,
OVModelForTokenClassification,
OVStableDiffusionPipeline,
OVStableDiffusionXLPipeline,
OVLatentConsistencyModelPipeline,
OVWeightQuantizationConfig,
)
from diffusers import ConfigMixin
_HEAD_TO_AUTOMODELS = {
"feature-extraction": "OVModelForFeatureExtraction",
"fill-mask": "OVModelForMaskedLM",
"text-generation": "OVModelForCausalLM",
"text-classification": "OVModelForSequenceClassification",
"token-classification": "OVModelForTokenClassification",
"question-answering": "OVModelForQuestionAnswering",
"image-classification": "OVModelForImageClassification",
"audio-classification": "OVModelForAudioClassification",
"stable-diffusion": "OVStableDiffusionPipeline",
"stable-diffusion-xl": "OVStableDiffusionXLPipeline",
"latent-consistency": "OVLatentConsistencyModelPipeline",
}
def quantize_model(
model_id: str,
dtype: str,
calibration_dataset: str,
ratio: str,
private_repo: bool,
overwritte: bool,
oauth_token: gr.OAuthToken,
):
if oauth_token.token is None:
return "You must be logged in to use this space"
if not model_id:
return f"### Invalid input 🐞 Please specify a model name, got {model_id}"
try:
model_name = model_id.split("/")[-1]
username = whoami(oauth_token.token)["name"]
w_t = dtype.replace("-", "")
suffix = f"{w_t}" if model_name.endswith("openvino") else f"openvino-{w_t}"
new_repo_id = f"{username}/{model_name}-{suffix}"
library_name = TasksManager.infer_library_from_model(model_id, token=oauth_token.token)
if library_name == "diffusers":
ConfigMixin.config_name = "model_index.json"
class_name = ConfigMixin.load_config(model_id, token=oauth_token.token)["_class_name"].lower()
if "xl" in class_name:
task = "stable-diffusion-xl"
elif "consistency" in class_name:
task = "latent-consistency"
else:
task = "stable-diffusion"
else:
task = TasksManager.infer_task_from_model(model_id, token=oauth_token.token)
if task == "text2text-generation":
return "Export of Seq2Seq models is currently disabled."
if task not in _HEAD_TO_AUTOMODELS:
return f"The task '{task}' is not supported, only {_HEAD_TO_AUTOMODELS.keys()} tasks are supported"
auto_model_class = _HEAD_TO_AUTOMODELS[task]
ov_files = _find_files_matching_pattern(
model_id,
pattern=r"(.*)?openvino(.*)?\_model.xml",
use_auth_token=oauth_token.token,
)
export = len(ov_files) == 0
if calibration_dataset == "None":
calibration_dataset = None
is_int8 = dtype == "8-bit"
# if library_name == "diffusers":
# quant_method = "hybrid"
if not is_int8 and calibration_dataset is not None:
quant_method = "awq"
else:
if calibration_dataset is not None:
print("Default quantization was selected, calibration dataset won't be used")
quant_method = "default"
quantization_config = OVWeightQuantizationConfig(
bits=8 if is_int8 else 4,
quant_method=quant_method,
dataset=None if quant_method=="default" else calibration_dataset,
ratio=1.0 if is_int8 else ratio,
num_samples=None if quant_method=="default" else 20,
)
api = HfApi(token=oauth_token.token)
if api.repo_exists(new_repo_id) and not overwritte:
return f"Model {new_repo_id} already exist, please tick the overwritte box to push on an existing repository"
with TemporaryDirectory() as d:
folder = os.path.join(d, repo_folder_name(repo_id=model_id, repo_type="models"))
os.makedirs(folder)
try:
api.snapshot_download(repo_id=model_id, local_dir=folder, allow_patterns=["*.json"])
ov_model = eval(auto_model_class).from_pretrained(
model_id,
export=export,
cache_dir=folder,
token=oauth_token.token,
quantization_config=quantization_config
)
ov_model.save_pretrained(folder)
new_repo_url = api.create_repo(repo_id=new_repo_id, exist_ok=True, private=private_repo)
new_repo_id = new_repo_url.repo_id
print("Repository created successfully!", new_repo_url)
folder = Path(folder)
for dir_name in (
"",
"vae_encoder",
"vae_decoder",
"text_encoder",
"text_encoder_2",
"unet",
"tokenizer",
"tokenizer_2",
"scheduler",
"feature_extractor",
):
if not (folder / dir_name).is_dir():
continue
for file_path in (folder / dir_name).iterdir():
if file_path.is_file():
try:
api.upload_file(
path_or_fileobj=file_path,
path_in_repo=os.path.join(dir_name, file_path.name),
repo_id=new_repo_id,
)
except Exception as e:
return f"Error uploading file {file_path}: {e}"
try:
card = ModelCard.load(model_id, token=oauth_token.token)
except:
card = ModelCard("")
if card.data.tags is None:
card.data.tags = []
if "openvino" not in card.data.tags:
card.data.tags.append("openvino")
card.data.tags.append("nncf")
card.data.tags.append(dtype)
card.data.base_model = model_id
card.text = dedent(
f"""
This model is a quantized version of [`{model_id}`](https://huggingface.co/{model_id}) and is converted to the OpenVINO format. This model was obtained via the [nncf-quantization](https://huggingface.co/spaces/echarlaix/nncf-quantization) space with [optimum-intel](https://github.com/huggingface/optimum-intel).
First make sure you have `optimum-intel` installed:
```bash
pip install optimum[openvino]
```
To load your model you can do as follows:
```python
from optimum.intel import {auto_model_class}
model_id = "{new_repo_id}"
model = {auto_model_class}.from_pretrained(model_id)
```
"""
)
card_path = os.path.join(folder, "README.md")
card.save(card_path)
api.upload_file(
path_or_fileobj=card_path,
path_in_repo="README.md",
repo_id=new_repo_id,
)
return f"This model was successfully quantized, find it under your repository {new_repo_url}"
finally:
shutil.rmtree(folder, ignore_errors=True)
except Exception as e:
return f"### Error: {e}"
DESCRIPTION = """
This Space uses [Optimum Intel](https://github.com/huggingface/optimum-intel) to automatically apply NNCF [Weight Only Quantization](https://huggingface.co/docs/optimum/main/en/intel/openvino/optimization) (WOQ) on your model and convert it to the [OpenVINO format](https://docs.openvino.ai/2024/documentation/openvino-ir-format.html) if not already.
After conversion, a repository will be pushed under your namespace with the resulting model.
The list of the supported architectures can be found in the [documentation](https://huggingface.co/docs/optimum/main/en/intel/openvino/models)
"""
model_id = HuggingfaceHubSearch(
label="Hub Model ID",
placeholder="Search for model id on the hub",
search_type="model",
)
dtype = gr.Dropdown(
["8-bit", "4-bit"],
value="8-bit",
label="Weights precision",
filterable=False,
visible=True,
)
"""
quant_method = gr.Dropdown(
["default", "awq", "hybrid"],
value="default",
label="Quantization method",
filterable=False,
visible=True,
)
"""
calibration_dataset = gr.Dropdown(
[
"None",
"wikitext2",
"c4",
"c4-new",
"conceptual_captions",
"laion/220k-GPT4Vision-captions-from-LIVIS",
"laion/filtered-wit",
],
value="None",
label="Calibration dataset",
filterable=False,
visible=True,
)
ratio = gr.Slider(
label="Ratio",
info="Parameter used when applying 4-bit quantization to control the ratio between 4-bit and 8-bit quantization",
minimum=0.0,
maximum=1.0,
step=0.1,
value=1.0,
)
private_repo = gr.Checkbox(
value=False,
label="Private repository",
info="Create a private repository instead of a public one",
)
overwritte = gr.Checkbox(
value=False,
label="Overwrite repository content",
info="Enable pushing files on existing repositories, potentially overwriting existing files",
)
interface = gr.Interface(
fn=quantize_model,
inputs=[
model_id,
dtype,
calibration_dataset,
ratio,
private_repo,
overwritte,
],
outputs=[
gr.Markdown(label="output"),
],
title="Quantize your model with NNCF",
description=DESCRIPTION,
api_name=False,
)
with gr.Blocks() as demo:
gr.Markdown("You must be logged in to use this space")
gr.LoginButton(min_width=250)
interface.render()
demo.launch()