Spaces:
Running
Running
import os | |
import shutil | |
import gradio as gr | |
from huggingface_hub import HfApi, whoami, ModelCard, model_info | |
from gradio_huggingfacehub_search import HuggingfaceHubSearch | |
from textwrap import dedent | |
from pathlib import Path | |
from tempfile import TemporaryDirectory | |
from huggingface_hub.file_download import repo_folder_name | |
from optimum.exporters import TasksManager | |
from optimum.intel.utils.modeling_utils import _find_files_matching_pattern | |
from optimum.intel import ( | |
OVModelForAudioClassification, | |
OVModelForCausalLM, | |
OVModelForFeatureExtraction, | |
OVModelForImageClassification, | |
OVModelForMaskedLM, | |
OVModelForQuestionAnswering, | |
OVModelForSeq2SeqLM, | |
OVModelForSequenceClassification, | |
OVModelForTokenClassification, | |
OVStableDiffusionPipeline, | |
OVStableDiffusionXLPipeline, | |
OVLatentConsistencyModelPipeline, | |
OVWeightQuantizationConfig, | |
) | |
from diffusers import ConfigMixin | |
_HEAD_TO_AUTOMODELS = { | |
"feature-extraction": "OVModelForFeatureExtraction", | |
"fill-mask": "OVModelForMaskedLM", | |
"text-generation": "OVModelForCausalLM", | |
"text-classification": "OVModelForSequenceClassification", | |
"token-classification": "OVModelForTokenClassification", | |
"question-answering": "OVModelForQuestionAnswering", | |
"image-classification": "OVModelForImageClassification", | |
"audio-classification": "OVModelForAudioClassification", | |
"stable-diffusion": "OVStableDiffusionPipeline", | |
"stable-diffusion-xl": "OVStableDiffusionXLPipeline", | |
"latent-consistency": "OVLatentConsistencyModelPipeline", | |
} | |
def quantize_model( | |
model_id: str, | |
dtype: str, | |
calibration_dataset: str, | |
ratio: str, | |
private_repo: bool, | |
overwritte: bool, | |
oauth_token: gr.OAuthToken, | |
): | |
if oauth_token.token is None: | |
return "You must be logged in to use this space" | |
if not model_id: | |
return f"### Invalid input 🐞 Please specify a model name, got {model_id}" | |
try: | |
model_name = model_id.split("/")[-1] | |
username = whoami(oauth_token.token)["name"] | |
w_t = dtype.replace("-", "") | |
suffix = f"{w_t}" if model_name.endswith("openvino") else f"openvino-{w_t}" | |
new_repo_id = f"{username}/{model_name}-{suffix}" | |
library_name = TasksManager.infer_library_from_model(model_id, token=oauth_token.token) | |
if library_name == "diffusers": | |
ConfigMixin.config_name = "model_index.json" | |
class_name = ConfigMixin.load_config(model_id, token=oauth_token.token)["_class_name"].lower() | |
if "xl" in class_name: | |
task = "stable-diffusion-xl" | |
elif "consistency" in class_name: | |
task = "latent-consistency" | |
else: | |
task = "stable-diffusion" | |
else: | |
task = TasksManager.infer_task_from_model(model_id, token=oauth_token.token) | |
if task == "text2text-generation": | |
return "Export of Seq2Seq models is currently disabled." | |
if task not in _HEAD_TO_AUTOMODELS: | |
return f"The task '{task}' is not supported, only {_HEAD_TO_AUTOMODELS.keys()} tasks are supported" | |
auto_model_class = _HEAD_TO_AUTOMODELS[task] | |
ov_files = _find_files_matching_pattern( | |
model_id, | |
pattern=r"(.*)?openvino(.*)?\_model.xml", | |
use_auth_token=oauth_token.token, | |
) | |
export = len(ov_files) == 0 | |
if calibration_dataset == "None": | |
calibration_dataset = None | |
is_int8 = dtype == "8-bit" | |
# if library_name == "diffusers": | |
# quant_method = "hybrid" | |
if not is_int8 and calibration_dataset is not None: | |
quant_method = "awq" | |
else: | |
if calibration_dataset is not None: | |
print("Default quantization was selected, calibration dataset won't be used") | |
quant_method = "default" | |
quantization_config = OVWeightQuantizationConfig( | |
bits=8 if is_int8 else 4, | |
quant_method=quant_method, | |
dataset=None if quant_method=="default" else calibration_dataset, | |
ratio=1.0 if is_int8 else ratio, | |
num_samples=None if quant_method=="default" else 20, | |
) | |
api = HfApi(token=oauth_token.token) | |
if api.repo_exists(new_repo_id) and not overwritte: | |
return f"Model {new_repo_id} already exist, please tick the overwritte box to push on an existing repository" | |
with TemporaryDirectory() as d: | |
folder = os.path.join(d, repo_folder_name(repo_id=model_id, repo_type="models")) | |
os.makedirs(folder) | |
try: | |
api.snapshot_download(repo_id=model_id, local_dir=folder, allow_patterns=["*.json"]) | |
ov_model = eval(auto_model_class).from_pretrained( | |
model_id, | |
export=export, | |
cache_dir=folder, | |
token=oauth_token.token, | |
quantization_config=quantization_config | |
) | |
ov_model.save_pretrained(folder) | |
new_repo_url = api.create_repo(repo_id=new_repo_id, exist_ok=True, private=private_repo) | |
new_repo_id = new_repo_url.repo_id | |
print("Repository created successfully!", new_repo_url) | |
folder = Path(folder) | |
for dir_name in ( | |
"", | |
"vae_encoder", | |
"vae_decoder", | |
"text_encoder", | |
"text_encoder_2", | |
"unet", | |
"tokenizer", | |
"tokenizer_2", | |
"scheduler", | |
"feature_extractor", | |
): | |
if not (folder / dir_name).is_dir(): | |
continue | |
for file_path in (folder / dir_name).iterdir(): | |
if file_path.is_file(): | |
try: | |
api.upload_file( | |
path_or_fileobj=file_path, | |
path_in_repo=os.path.join(dir_name, file_path.name), | |
repo_id=new_repo_id, | |
) | |
except Exception as e: | |
return f"Error uploading file {file_path}: {e}" | |
try: | |
card = ModelCard.load(model_id, token=oauth_token.token) | |
except: | |
card = ModelCard("") | |
if card.data.tags is None: | |
card.data.tags = [] | |
if "openvino" not in card.data.tags: | |
card.data.tags.append("openvino") | |
card.data.tags.append("nncf") | |
card.data.tags.append(dtype) | |
card.data.base_model = model_id | |
card.text = dedent( | |
f""" | |
This model is a quantized version of [`{model_id}`](https://huggingface.co/{model_id}) and is converted to the OpenVINO format. This model was obtained via the [nncf-quantization](https://huggingface.co/spaces/echarlaix/nncf-quantization) space with [optimum-intel](https://github.com/huggingface/optimum-intel). | |
First make sure you have `optimum-intel` installed: | |
```bash | |
pip install optimum[openvino] | |
``` | |
To load your model you can do as follows: | |
```python | |
from optimum.intel import {auto_model_class} | |
model_id = "{new_repo_id}" | |
model = {auto_model_class}.from_pretrained(model_id) | |
``` | |
""" | |
) | |
card_path = os.path.join(folder, "README.md") | |
card.save(card_path) | |
api.upload_file( | |
path_or_fileobj=card_path, | |
path_in_repo="README.md", | |
repo_id=new_repo_id, | |
) | |
return f"This model was successfully quantized, find it under your repository {new_repo_url}" | |
finally: | |
shutil.rmtree(folder, ignore_errors=True) | |
except Exception as e: | |
return f"### Error: {e}" | |
DESCRIPTION = """ | |
This Space uses [Optimum Intel](https://github.com/huggingface/optimum-intel) to automatically apply NNCF [Weight Only Quantization](https://huggingface.co/docs/optimum/main/en/intel/openvino/optimization) (WOQ) on your model and convert it to the [OpenVINO format](https://docs.openvino.ai/2024/documentation/openvino-ir-format.html) if not already. | |
After conversion, a repository will be pushed under your namespace with the resulting model. | |
The list of the supported architectures can be found in the [documentation](https://huggingface.co/docs/optimum/main/en/intel/openvino/models) | |
""" | |
model_id = HuggingfaceHubSearch( | |
label="Hub Model ID", | |
placeholder="Search for model id on the hub", | |
search_type="model", | |
) | |
dtype = gr.Dropdown( | |
["8-bit", "4-bit"], | |
value="8-bit", | |
label="Weights precision", | |
filterable=False, | |
visible=True, | |
) | |
""" | |
quant_method = gr.Dropdown( | |
["default", "awq", "hybrid"], | |
value="default", | |
label="Quantization method", | |
filterable=False, | |
visible=True, | |
) | |
""" | |
calibration_dataset = gr.Dropdown( | |
[ | |
"None", | |
"wikitext2", | |
"c4", | |
"c4-new", | |
"conceptual_captions", | |
"laion/220k-GPT4Vision-captions-from-LIVIS", | |
"laion/filtered-wit", | |
], | |
value="None", | |
label="Calibration dataset", | |
filterable=False, | |
visible=True, | |
) | |
ratio = gr.Slider( | |
label="Ratio", | |
info="Parameter used when applying 4-bit quantization to control the ratio between 4-bit and 8-bit quantization", | |
minimum=0.0, | |
maximum=1.0, | |
step=0.1, | |
value=1.0, | |
) | |
private_repo = gr.Checkbox( | |
value=False, | |
label="Private repository", | |
info="Create a private repository instead of a public one", | |
) | |
overwritte = gr.Checkbox( | |
value=False, | |
label="Overwrite repository content", | |
info="Enable pushing files on existing repositories, potentially overwriting existing files", | |
) | |
interface = gr.Interface( | |
fn=quantize_model, | |
inputs=[ | |
model_id, | |
dtype, | |
calibration_dataset, | |
ratio, | |
private_repo, | |
overwritte, | |
], | |
outputs=[ | |
gr.Markdown(label="output"), | |
], | |
title="Quantize your model with NNCF", | |
description=DESCRIPTION, | |
api_name=False, | |
) | |
with gr.Blocks() as demo: | |
gr.Markdown("You must be logged in to use this space") | |
gr.LoginButton(min_width=250) | |
interface.render() | |
demo.launch() | |