Spaces:
Running
Running
# -------------------------------------------------------- | |
# InternVL | |
# Copyright (c) 2024 OpenGVLab | |
# Licensed under The MIT License [see LICENSE for details] | |
# -------------------------------------------------------- | |
import argparse | |
import base64 | |
import datetime | |
import hashlib | |
import json | |
import os | |
import random | |
import re | |
import sys | |
# from streamlit_js_eval import streamlit_js_eval | |
from functools import partial | |
from io import BytesIO | |
import cv2 | |
import numpy as np | |
import requests | |
import streamlit as st | |
from constants import LOGDIR, server_error_msg | |
from library import Library | |
from PIL import Image, ImageDraw, ImageFont | |
from streamlit_image_select import image_select | |
custom_args = sys.argv[1:] | |
parser = argparse.ArgumentParser() | |
parser.add_argument('--controller_url', type=str, default='http://10.140.60.209:10075', help='url of the controller') | |
parser.add_argument('--sd_worker_url', type=str, default='http://0.0.0.0:40006', help='url of the stable diffusion worker') | |
parser.add_argument('--max_image_limit', type=int, default=4, help='maximum number of images') | |
args = parser.parse_args(custom_args) | |
controller_url = args.controller_url | |
sd_worker_url = args.sd_worker_url | |
max_image_limit = args.max_image_limit | |
print('args:', args) | |
def get_model_list(): | |
ret = requests.post(controller_url + '/refresh_all_workers') | |
assert ret.status_code == 200 | |
ret = requests.post(controller_url + '/list_models') | |
models = ret.json()['models'] | |
return models | |
def load_upload_file_and_show(): | |
if uploaded_files is not None: | |
images = [] | |
for file in uploaded_files: | |
file_bytes = np.asarray(bytearray(file.read()), dtype=np.uint8) | |
img = cv2.imdecode(file_bytes, cv2.IMREAD_COLOR) | |
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) | |
img = Image.fromarray(img) | |
images.append(img) | |
with upload_image_preview.container(): | |
Library(images) | |
image_hashes = [hashlib.md5(image.tobytes()).hexdigest() for image in images] | |
for image, hash in zip(images, image_hashes): | |
t = datetime.datetime.now() | |
filename = os.path.join(LOGDIR, 'serve_images', f'{t.year}-{t.month:02d}-{t.day:02d}', f'{hash}.jpg') | |
if not os.path.isfile(filename): | |
os.makedirs(os.path.dirname(filename), exist_ok=True) | |
image.save(filename) | |
return images | |
def get_selected_worker_ip(): | |
ret = requests.post(controller_url + '/get_worker_address', | |
json={'model': selected_model}) | |
worker_addr = ret.json()['address'] | |
return worker_addr | |
def generate_response(messages): | |
send_messages = [{'role': 'system', 'content': persona_rec}] | |
for message in messages: | |
if message['role'] == 'user': | |
user_message = {'role': 'user', 'content': message['content']} | |
if 'image' in message and len('image') > 0: | |
user_message['image'] = [] | |
for image in message['image']: | |
user_message['image'].append(pil_image_to_base64(image)) | |
send_messages.append(user_message) | |
else: | |
send_messages.append({'role': 'assistant', 'content': message['content']}) | |
pload = { | |
'model': selected_model, | |
'prompt': send_messages, | |
'temperature': float(temperature), | |
'top_p': float(top_p), | |
'max_new_tokens': max_length, | |
'max_input_tiles': max_input_tiles, | |
'repetition_penalty': float(repetition_penalty), | |
} | |
worker_addr = get_selected_worker_ip() | |
headers = {'User-Agent': 'InternVL-Chat Client'} | |
placeholder, output = st.empty(), '' | |
try: | |
response = requests.post(worker_addr + '/worker_generate_stream', | |
headers=headers, json=pload, stream=True, timeout=10) | |
for chunk in response.iter_lines(decode_unicode=False, delimiter=b'\0'): | |
if chunk: | |
data = json.loads(chunk.decode()) | |
if data['error_code'] == 0: | |
output = data['text'] | |
# Phi3-3.8B will produce abnormal `�` output | |
if '4B' in selected_model and '�' in output[-2:]: | |
output = output.replace('�', '') | |
break | |
placeholder.markdown(output + '▌') | |
else: | |
output = data['text'] + f" (error_code: {data['error_code']})" | |
placeholder.markdown(output) | |
placeholder.markdown(output) | |
except requests.exceptions.RequestException as e: | |
placeholder.markdown(server_error_msg) | |
return output | |
def pil_image_to_base64(image): | |
buffered = BytesIO() | |
image.save(buffered, format='PNG') | |
return base64.b64encode(buffered.getvalue()).decode('utf-8') | |
def clear_chat_history(): | |
st.session_state.messages = [] | |
st.session_state['image_select'] = -1 | |
def clear_file_uploader(): | |
st.session_state.uploader_key += 1 | |
st.rerun() | |
def combined_func(func_list): | |
for func in func_list: | |
func() | |
def show_one_or_multiple_images(message, total_image_num, is_input=True): | |
if 'image' in message: | |
if is_input: | |
total_image_num = total_image_num + len(message['image']) | |
if lan == 'English': | |
if len(message['image']) == 1 and total_image_num == 1: | |
label = f"(In this conversation, {len(message['image'])} image was uploaded, {total_image_num} image in total)" | |
elif len(message['image']) == 1 and total_image_num > 1: | |
label = f"(In this conversation, {len(message['image'])} image was uploaded, {total_image_num} images in total)" | |
else: | |
label = f"(In this conversation, {len(message['image'])} images were uploaded, {total_image_num} images in total)" | |
else: | |
label = f"(在本次对话中,上传了{len(message['image'])}张图片,总共上传了{total_image_num}张图片)" | |
upload_image_preview = st.empty() | |
with upload_image_preview.container(): | |
Library(message['image']) | |
if is_input and len(message['image']) > 0: | |
st.markdown(label) | |
def find_bounding_boxes(response): | |
pattern = re.compile(r'<ref>\s*(.*?)\s*</ref>\s*<box>\s*(\[\[.*?\]\])\s*</box>') | |
matches = pattern.findall(response) | |
results = [] | |
for match in matches: | |
results.append((match[0], eval(match[1]))) | |
returned_image = None | |
for message in st.session_state.messages: | |
if message['role'] == 'user' and 'image' in message and len(message['image']) > 0: | |
last_image = message['image'][-1] | |
width, height = last_image.size | |
returned_image = last_image.copy() | |
draw = ImageDraw.Draw(returned_image) | |
for result in results: | |
line_width = max(1, int(min(width, height) / 200)) | |
random_color = (random.randint(0, 128), random.randint(0, 128), random.randint(0, 128)) | |
category_name, coordinates = result | |
coordinates = [(float(x[0]) / 1000, float(x[1]) / 1000, float(x[2]) / 1000, float(x[3]) / 1000) for x in coordinates] | |
coordinates = [(int(x[0] * width), int(x[1] * height), int(x[2] * width), int(x[3] * height)) for x in coordinates] | |
for box in coordinates: | |
draw.rectangle(box, outline=random_color, width=line_width) | |
font = ImageFont.truetype('static/SimHei.ttf', int(20 * line_width / 2)) | |
text_size = font.getbbox(category_name) | |
text_width, text_height = text_size[2] - text_size[0], text_size[3] - text_size[1] | |
text_position = (box[0], max(0, box[1] - text_height)) | |
draw.rectangle( | |
[text_position, (text_position[0] + text_width, text_position[1] + text_height)], | |
fill=random_color | |
) | |
draw.text(text_position, category_name, fill='white', font=font) | |
return returned_image if len(matches) > 0 else None | |
def query_image_generation(response, sd_worker_url, timeout=15): | |
sd_worker_url = f'{sd_worker_url}/generate_image/' | |
pattern = r'```drawing-instruction\n(.*?)\n```' | |
match = re.search(pattern, response, re.DOTALL) | |
if match: | |
payload = {'caption': match.group(1)} | |
print('drawing-instruction:', payload) | |
response = requests.post(sd_worker_url, json=payload, timeout=timeout) | |
response.raise_for_status() # 检查HTTP请求是否成功 | |
image = Image.open(BytesIO(response.content)) | |
return image | |
else: | |
return None | |
def regenerate(): | |
st.session_state.messages = st.session_state.messages[:-1] | |
st.rerun() | |
logo_code = """ | |
<svg width="1700" height="200" xmlns="http://www.w3.org/2000/svg"> | |
<defs> | |
<linearGradient id="gradient1" x1="0%" y1="0%" x2="100%" y2="0%"> | |
<stop offset="0%" style="stop-color: red; stop-opacity: 1" /> | |
<stop offset="100%" style="stop-color: orange; stop-opacity: 1" /> | |
</linearGradient> | |
</defs> | |
<text x="000" y="160" font-size="180" font-weight="bold" fill="url(#gradient1)" style="font-family: Arial, sans-serif;"> | |
InternVL2 Demo | |
</text> | |
</svg> | |
""" | |
# App title | |
st.set_page_config(page_title='InternVL2') | |
if 'uploader_key' not in st.session_state: | |
st.session_state.uploader_key = 0 | |
# 如果用户要求绘图,请以生成符合Stable Diffusion要求的、满足```drawing-instruction\n{instruction}\n```格式的绘图指令。 | |
system_message = """我是书生·万象,英文名是InternVL,是由上海人工智能实验室、清华大学及多家合作单位联合开发的多模态大语言模型。人工智能实验室致力于原始技术创新,开源开放,共享共创,推动科技进步和产业发展。 | |
对于目标检测任务,请按照以下格式输出坐标框:<ref>某类物体</ref><box>[[x1, y1, x2, y2], ...]</box> | |
对于画画任务,请按照以下格式输出绘图指令,注意指令需要英文:```drawing-instruction\n{instruction}\n``` | |
在处理输入包含多张图像的情况下,请严格按照以下规则区分和处理每一张图像,并小心区分用户的提问针对的是哪一张图片: | |
1. 图像编号和标记:每张图像都将使用明确的编号标记,例如 "Image-1: <img></img>","Image-2: <img></img>","Image-3: <img></img>" 等等。 | |
2. 用户提问关联:用户的提问可能会具体指向某一张编号的图像,请仔细辨别用户问题中提到的图像编号。 | |
请尽可能详细地回答用户的问题。""" | |
# Replicate Credentials | |
with st.sidebar: | |
model_list = get_model_list() | |
# "[![Open in GitHub](https://github.com/codespaces/badge.svg)](https://github.com/OpenGVLab/InternVL)" | |
lan = st.selectbox('#### Language / 语言', ['English', '中文'], on_change=st.rerun) | |
if lan == 'English': | |
st.logo(logo_code, link='https://github.com/OpenGVLab/InternVL', icon_image=logo_code) | |
st.subheader('Models and parameters') | |
selected_model = st.sidebar.selectbox('Choose a InternVL2 chat model', model_list, key='selected_model', on_change=clear_chat_history) | |
with st.expander('🤖 System Prompt'): | |
persona_rec = st.text_area('System Prompt', value=system_message, | |
help='System prompt is a pre-defined message used to instruct the assistant at the beginning of a conversation.', | |
height=200) | |
with st.expander('🔥 Advanced Options'): | |
temperature = st.slider('temperature', min_value=0.0, max_value=1.0, value=0.8, step=0.1) | |
top_p = st.slider('top_p', min_value=0.0, max_value=1.0, value=0.7, step=0.1) | |
repetition_penalty = st.slider('repetition_penalty', min_value=1.0, max_value=1.5, value=1.1, step=0.02) | |
max_length = st.slider('max_length', min_value=0, max_value=4096, value=2048, step=128) | |
max_input_tiles = st.slider('max_input_tiles (control image resolution)', min_value=1, max_value=24, value=12, step=1) | |
upload_image_preview = st.empty() | |
uploaded_files = st.file_uploader('Upload files', accept_multiple_files=True, | |
type=['png', 'jpg', 'jpeg', 'webp'], | |
help='You can upload multiple images (max to 4) or a single video.', | |
key=f'uploader_{st.session_state.uploader_key}', | |
on_change=st.rerun) | |
uploaded_pil_images = load_upload_file_and_show() | |
else: | |
st.subheader('模型和参数') | |
selected_model = st.sidebar.selectbox('选择一个 InternVL2 对话模型', model_list, key='selected_model', on_change=clear_chat_history) | |
with st.expander('🤖 系统提示'): | |
persona_rec = st.text_area('系统提示', value=system_message, | |
help='系统提示是在对话开始时用于指示助手的预定义消息。', | |
height=200) | |
with st.expander('🔥 高级选项'): | |
temperature = st.slider('temperature', min_value=0.0, max_value=1.0, value=0.8, step=0.1) | |
top_p = st.slider('top_p', min_value=0.0, max_value=1.0, value=0.7, step=0.1) | |
repetition_penalty = st.slider('重复惩罚', min_value=1.0, max_value=1.5, value=1.1, step=0.02) | |
max_length = st.slider('最大输出长度', min_value=0, max_value=4096, value=2048, step=128) | |
max_input_tiles = st.slider('最大图像块数 (控制图像分辨率)', min_value=1, max_value=24, value=12, step=1) | |
upload_image_preview = st.empty() | |
uploaded_files = st.file_uploader('上传文件', accept_multiple_files=True, | |
type=['png', 'jpg', 'jpeg', 'webp'], | |
help='你可以上传多张图像(最多4张)或者一个视频。', | |
key=f'uploader_{st.session_state.uploader_key}', | |
on_change=st.rerun) | |
uploaded_pil_images = load_upload_file_and_show() | |
gradient_text_html = """ | |
<style> | |
.gradient-text { | |
font-weight: bold; | |
background: -webkit-linear-gradient(left, red, orange); | |
background: linear-gradient(to right, red, orange); | |
-webkit-background-clip: text; | |
-webkit-text-fill-color: transparent; | |
display: inline; | |
font-size: 3em; | |
} | |
</style> | |
<div class="gradient-text">InternVL2</div> | |
""" | |
if lan == 'English': | |
st.markdown(gradient_text_html, unsafe_allow_html=True) | |
st.caption('Expanding Performance Boundaries of Open-Source Multimodal Large Language Models') | |
else: | |
st.markdown(gradient_text_html.replace('InternVL2', '书生·万象'), unsafe_allow_html=True) | |
st.caption('扩展开源多模态大语言模型的性能边界') | |
# Store LLM generated responses | |
if 'messages' not in st.session_state.keys(): | |
clear_chat_history() | |
gallery_placeholder = st.empty() | |
with gallery_placeholder.container(): | |
images = ['gallery/prod_en_17.png', 'gallery/astro_on_unicorn.png', | |
'gallery/prod_12.png', 'gallery/prod_9.jpg', | |
'gallery/prod_4.png', 'gallery/cheetah.png', 'gallery/prod_1.jpeg'] | |
images = [Image.open(image) for image in images] | |
if lan == 'English': | |
captions = ["I'm on a diet, but I really want to eat them.", | |
'Could you help me draw a picture like this one?', | |
'What are the consequences of the easy decisions shown in this image?', | |
"What's at the far end of the image?", | |
'Is this a real plant? Analyze the reasons.', | |
'Detect the <ref>the middle leopard</ref> in the image with its bounding box.', | |
'What is the atmosphere of this image?'] | |
else: | |
captions = ['我在减肥,但我真的很想吃这个。', | |
'请画一张类似这样的画', | |
'这张图上 easy decisions 导致了什么后果?', | |
'画面最远处是什么?', | |
'这是真的植物吗?分析原因', | |
'在以下图像中进行目标检测,并标出所有物体。', | |
'这幅图的氛围如何?'] | |
img_idx = image_select( | |
label='', | |
images=images, | |
captions=captions, | |
use_container_width=True, | |
index=-1, | |
return_value='index', | |
key='image_select' | |
) | |
if lan == 'English': | |
st.caption('Note: For non-commercial research use only. AI responses may contain errors. Users should not spread or allow others to spread hate speech, violence, pornography, or fraud-related harmful information.') | |
else: | |
st.caption('注意:仅限非商业研究使用。用户应不传播或允许他人传播仇恨言论、暴力、色情内容或与欺诈相关的有害信息。') | |
if img_idx != -1 and len(st.session_state.messages) == 0 and selected_model is not None: | |
gallery_placeholder.empty() | |
st.session_state.messages.append({'role': 'user', 'content': captions[img_idx], 'image': [images[img_idx]]}) | |
st.rerun() # Fixed an issue where examples were not emptied | |
if len(st.session_state.messages) > 0: | |
gallery_placeholder.empty() | |
# Display or clear chat messages | |
total_image_num = 0 | |
for message in st.session_state.messages: | |
with st.chat_message(message['role']): | |
st.markdown(message['content']) | |
show_one_or_multiple_images(message, total_image_num, is_input=message['role'] == 'user') | |
if 'image' in message and message['role'] == 'user': | |
total_image_num += len(message['image']) | |
input_disable_flag = (len(model_list) == 0) or total_image_num + len(uploaded_files) > max_image_limit | |
if lan == 'English': | |
st.sidebar.button('Clear Chat History', on_click=partial(combined_func, func_list=[clear_chat_history, clear_file_uploader])) | |
if input_disable_flag: | |
prompt = st.chat_input('Too many images have been uploaded. Please clear the history.', disabled=input_disable_flag) | |
else: | |
prompt = st.chat_input('Send messages to InternVL', disabled=input_disable_flag) | |
else: | |
st.sidebar.button('清空聊天记录', on_click=partial(combined_func, func_list=[clear_chat_history, clear_file_uploader])) | |
if input_disable_flag: | |
prompt = st.chat_input('输入的图片太多了,请清空历史记录。', disabled=input_disable_flag) | |
else: | |
prompt = st.chat_input('给 “InternVL” 发送消息', disabled=input_disable_flag) | |
alias_instructions = { | |
'目标检测': '在以下图像中进行目标检测,并标出所有物体。', | |
'检测': '在以下图像中进行目标检测,并标出所有物体。', | |
'object detection': 'Please identify and label all objects in the following image.', | |
'detection': 'Please identify and label all objects in the following image.' | |
} | |
if prompt: | |
prompt = alias_instructions[prompt] if prompt in alias_instructions else prompt | |
gallery_placeholder.empty() | |
image_list = uploaded_pil_images | |
st.session_state.messages.append({'role': 'user', 'content': prompt, 'image': image_list}) | |
with st.chat_message('user'): | |
st.write(prompt) | |
show_one_or_multiple_images(st.session_state.messages[-1], total_image_num, is_input=True) | |
if image_list: | |
clear_file_uploader() | |
# Generate a new response if last message is not from assistant | |
if len(st.session_state.messages) > 0 and st.session_state.messages[-1]['role'] != 'assistant': | |
with st.chat_message('assistant'): | |
with st.spinner('Thinking...'): | |
if not prompt: | |
prompt = st.session_state.messages[-1]['content'] | |
response = generate_response(st.session_state.messages) | |
message = {'role': 'assistant', 'content': response} | |
with st.spinner('Drawing...'): | |
if '<ref>' in response: | |
has_returned_image = find_bounding_boxes(response) | |
message['image'] = [has_returned_image] if has_returned_image else [] | |
if '```drawing-instruction' in response: | |
has_returned_image = query_image_generation(response, sd_worker_url=sd_worker_url) | |
message['image'] = [has_returned_image] if has_returned_image else [] | |
st.session_state.messages.append(message) | |
show_one_or_multiple_images(message, total_image_num, is_input=False) | |
if len(st.session_state.messages) > 0: | |
col1, col2, col3, col4 = st.columns([1, 1, 1, 1.3]) | |
text1 = 'Clear Chat History' if lan == 'English' else '清空聊天记录' | |
text2 = 'Regenerate' if lan == 'English' else '重新生成' | |
text3 = 'Copy' if lan == 'English' else '复制回答' | |
with col1: | |
st.button(text1, on_click=partial(combined_func, func_list=[clear_chat_history, clear_file_uploader]), | |
key='clear_chat_history_button') | |
with col2: | |
st.button(text2, on_click=regenerate, key='regenerate_button') | |
print(st.session_state.messages) | |