|
# π¦ LaMa: Resolution-robust Large Mask Inpainting with Fourier Convolutions |
|
|
|
by Roman Suvorov, Elizaveta Logacheva, Anton Mashikhin, |
|
Anastasia Remizova, Arsenii Ashukha, Aleksei Silvestrov, Naejin Kong, Harshith Goka, Kiwoong Park, Victor Lempitsky. |
|
|
|
<p align="center" "font-size:30px;"> |
|
π₯π₯π₯ |
|
<br> |
|
<b> |
|
LaMa generalizes surprisingly well to much higher resolutions (~2kβοΈ) than it saw during training (256x256), and achieves the excellent performance even in challenging scenarios, e.g. completion of periodic structures.</b> |
|
</p> |
|
|
|
[[Project page](https://advimman.github.io/lama-project/)] [[arXiv](https://arxiv.org/abs/2109.07161)] [[Supplementary](https://ashukha.com/projects/lama_21/lama_supmat_2021.pdf)] [[BibTeX](https://senya-ashukha.github.io/projects/lama_21/paper.txt)] [[Casual GAN Papers Summary](https://www.casualganpapers.com/large-masks-fourier-convolutions-inpainting/LaMa-explained.html)] |
|
|
|
<p align="center"> |
|
<a href="https://colab.research.google.com/github/advimman/lama/blob/master//colab/LaMa_inpainting.ipynb"> |
|
<img src="https://colab.research.google.com/assets/colab-badge.svg"/> |
|
</a> |
|
<br> |
|
Try out in Google Colab |
|
</p> |
|
|
|
<p align="center"> |
|
<img src="https://raw.githubusercontent.com/senya-ashukha/senya-ashukha.github.io/master/projects/lama_21/ezgif-4-0db51df695a8.gif" /> |
|
</p> |
|
|
|
|
|
<p align="center"> |
|
<img src="https://raw.githubusercontent.com/senya-ashukha/senya-ashukha.github.io/master/projects/lama_21/gif_for_lightning_v1_white.gif" /> |
|
</p> |
|
|
|
# LaMa development |
|
(Feel free to share your paper by creating an issue) |
|
- Amazing results [paper](https://arxiv.org/abs/2206.13644) / [video](https://www.youtube.com/watch?v=gEukhOheWgE) / code https://github.com/advimman/lama/pull/112 / by Geomagical Labs ([geomagical.com](geomagical.com)) |
|
<p align="center"> |
|
<img src="https://raw.githubusercontent.com/senya-ashukha/senya-ashukha.github.io/master/images/FeatureRefinement.png" /> |
|
</p> |
|
|
|
# Non-official 3rd party apps: |
|
(Feel free to share your app/implementation/demo by creating an issue) |
|
- [https://cleanup.pictures](https://cleanup.pictures/) - a simple interactive object removal tool by [@cyrildiagne](https://twitter.com/cyrildiagne) |
|
- [lama-cleaner](https://github.com/Sanster/lama-cleaner) by [@Sanster](https://github.com/Sanster/lama-cleaner) is a self-host version of [https://cleanup.pictures](https://cleanup.pictures/) |
|
- Integrated to [Huggingface Spaces](https://huggingface.co/spaces) with [Gradio](https://github.com/gradio-app/gradio). See demo: [![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/spaces/akhaliq/lama) by [@AK391](https://github.com/AK391) |
|
- Telegram bot [@MagicEraserBot](https://t.me/MagicEraserBot) by [@Moldoteck](https://github.com/Moldoteck), [code](https://github.com/Moldoteck/MagicEraser) |
|
- [Auto-LaMa](https://github.com/andy971022/auto-lama) = DE:TR object detection + LaMa inpainting by [@andy971022](https://github.com/andy971022) |
|
- [LAMA-Magic-Eraser-Local](https://github.com/zhaoyun0071/LAMA-Magic-Eraser-Local) = a standalone inpainting application built with PyQt5 by [@zhaoyun0071](https://github.com/zhaoyun0071) |
|
- [Hama](https://www.hama.app/) - object removal with a smart brush which simplifies mask drawing. |
|
- [ModelScope](https://www.modelscope.cn/models/damo/cv_fft_inpainting_lama/summary) = the largest Model Community in Chinese by [@chenbinghui1](https://github.com/chenbinghui1). |
|
- [LaMa with MaskDINO](https://github.com/qwopqwop200/lama-with-maskdino) = MaskDINO object detection + LaMa inpainting with refinement by [@qwopqwop200](https://github.com/qwopqwop200). |
|
|
|
# Environment setup |
|
|
|
Clone the repo: |
|
`git clone https://github.com/advimman/lama.git` |
|
|
|
There are three options of an environment: |
|
|
|
1. Python virtualenv: |
|
|
|
``` |
|
virtualenv inpenv --python=/usr/bin/python3 |
|
source inpenv/bin/activate |
|
pip install torch==1.8.0 torchvision==0.9.0 |
|
|
|
cd lama |
|
pip install -r requirements.txt |
|
``` |
|
|
|
2. Conda |
|
|
|
``` |
|
% Install conda for Linux, for other OS download miniconda at https://docs.conda.io/en/latest/miniconda.html |
|
wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh |
|
bash Miniconda3-latest-Linux-x86_64.sh -b -p $HOME/miniconda |
|
$HOME/miniconda/bin/conda init bash |
|
|
|
cd lama |
|
conda env create -f conda_env.yml |
|
conda activate lama |
|
conda install pytorch torchvision torchaudio cudatoolkit=10.2 -c pytorch -y |
|
pip install pytorch-lightning==1.2.9 |
|
``` |
|
|
|
3. Docker: No actions are needed π. |
|
|
|
# Inference <a name="prediction"></a> |
|
|
|
Run |
|
``` |
|
cd lama |
|
export TORCH_HOME=$(pwd) && export PYTHONPATH=$(pwd) |
|
``` |
|
|
|
**1. Download pre-trained models** |
|
|
|
Install tool for yandex disk link extraction: |
|
|
|
``` |
|
pip3 install wldhx.yadisk-direct |
|
``` |
|
|
|
The best model (Places2, Places Challenge): |
|
|
|
``` |
|
curl -L $(yadisk-direct https://disk.yandex.ru/d/ouP6l8VJ0HpMZg) -o big-lama.zip |
|
unzip big-lama.zip |
|
``` |
|
|
|
All models (Places & CelebA-HQ): |
|
|
|
``` |
|
curl -L $(yadisk-direct https://disk.yandex.ru/d/EgqaSnLohjuzAg) -o lama-models.zip |
|
unzip lama-models.zip |
|
``` |
|
|
|
**2. Prepare images and masks** |
|
|
|
Download test images: |
|
|
|
``` |
|
curl -L $(yadisk-direct https://disk.yandex.ru/d/xKQJZeVRk5vLlQ) -o LaMa_test_images.zip |
|
unzip LaMa_test_images.zip |
|
``` |
|
<details> |
|
<summary>OR prepare your data:</summary> |
|
1) Create masks named as `[images_name]_maskXXX[image_suffix]`, put images and masks in the same folder. |
|
|
|
- You can use the [script](https://github.com/advimman/lama/blob/main/bin/gen_mask_dataset.py) for random masks generation. |
|
- Check the format of the files: |
|
``` |
|
image1_mask001.png |
|
image1.png |
|
image2_mask001.png |
|
image2.png |
|
``` |
|
|
|
2) Specify `image_suffix`, e.g. `.png` or `.jpg` or `_input.jpg` in `configs/prediction/default.yaml`. |
|
|
|
</details> |
|
|
|
|
|
**3. Predict** |
|
|
|
On the host machine: |
|
|
|
python3 bin/predict.py model.path=$(pwd)/big-lama indir=$(pwd)/LaMa_test_images outdir=$(pwd)/output |
|
|
|
**OR** in the docker |
|
|
|
The following command will pull the docker image from Docker Hub and execute the prediction script |
|
``` |
|
bash docker/2_predict.sh $(pwd)/big-lama $(pwd)/LaMa_test_images $(pwd)/output device=cpu |
|
``` |
|
Docker cuda: TODO |
|
|
|
**4. Predict with Refinement** |
|
|
|
On the host machine: |
|
|
|
python3 bin/predict.py refine=True model.path=$(pwd)/big-lama indir=$(pwd)/LaMa_test_images outdir=$(pwd)/output |
|
|
|
# Train and Eval |
|
|
|
Make sure you run: |
|
|
|
``` |
|
cd lama |
|
export TORCH_HOME=$(pwd) && export PYTHONPATH=$(pwd) |
|
``` |
|
|
|
Then download models for _perceptual loss_: |
|
|
|
mkdir -p ade20k/ade20k-resnet50dilated-ppm_deepsup/ |
|
wget -P ade20k/ade20k-resnet50dilated-ppm_deepsup/ http://sceneparsing.csail.mit.edu/model/pytorch/ade20k-resnet50dilated-ppm_deepsup/encoder_epoch_20.pth |
|
|
|
|
|
## Places |
|
|
|
β οΈ NB: FID/SSIM/LPIPS metric values for Places that we see in LaMa paper are computed on 30000 images that we produce in evaluation section below. |
|
For more details on evaluation data check [[Section 3. Dataset splits in Supplementary](https://ashukha.com/projects/lama_21/lama_supmat_2021.pdf#subsection.3.1)] β οΈ |
|
|
|
On the host machine: |
|
|
|
# Download data from http://places2.csail.mit.edu/download.html |
|
# Places365-Standard: Train(105GB)/Test(19GB)/Val(2.1GB) from High-resolution images section |
|
wget http://data.csail.mit.edu/places/places365/train_large_places365standard.tar |
|
wget http://data.csail.mit.edu/places/places365/val_large.tar |
|
wget http://data.csail.mit.edu/places/places365/test_large.tar |
|
|
|
# Unpack train/test/val data and create .yaml config for it |
|
bash fetch_data/places_standard_train_prepare.sh |
|
bash fetch_data/places_standard_test_val_prepare.sh |
|
|
|
# Sample images for test and viz at the end of epoch |
|
bash fetch_data/places_standard_test_val_sample.sh |
|
bash fetch_data/places_standard_test_val_gen_masks.sh |
|
|
|
# Run training |
|
python3 bin/train.py -cn lama-fourier location=places_standard |
|
|
|
# To evaluate trained model and report metrics as in our paper |
|
# we need to sample previously unseen 30k images and generate masks for them |
|
bash fetch_data/places_standard_evaluation_prepare_data.sh |
|
|
|
# Infer model on thick/thin/medium masks in 256 and 512 and run evaluation |
|
# like this: |
|
python3 bin/predict.py \ |
|
model.path=$(pwd)/experiments/<user>_<date:time>_lama-fourier_/ \ |
|
indir=$(pwd)/places_standard_dataset/evaluation/random_thick_512/ \ |
|
outdir=$(pwd)/inference/random_thick_512 model.checkpoint=last.ckpt |
|
|
|
python3 bin/evaluate_predicts.py \ |
|
$(pwd)/configs/eval2_gpu.yaml \ |
|
$(pwd)/places_standard_dataset/evaluation/random_thick_512/ \ |
|
$(pwd)/inference/random_thick_512 \ |
|
$(pwd)/inference/random_thick_512_metrics.csv |
|
|
|
|
|
|
|
Docker: TODO |
|
|
|
## CelebA |
|
On the host machine: |
|
|
|
# Make shure you are in lama folder |
|
cd lama |
|
export TORCH_HOME=$(pwd) && export PYTHONPATH=$(pwd) |
|
|
|
# Download CelebA-HQ dataset |
|
# Download data256x256.zip from https://drive.google.com/drive/folders/11Vz0fqHS2rXDb5pprgTjpD7S2BAJhi1P |
|
|
|
# unzip & split into train/test/visualization & create config for it |
|
bash fetch_data/celebahq_dataset_prepare.sh |
|
|
|
# generate masks for test and visual_test at the end of epoch |
|
bash fetch_data/celebahq_gen_masks.sh |
|
|
|
# Run training |
|
python3 bin/train.py -cn lama-fourier-celeba data.batch_size=10 |
|
|
|
# Infer model on thick/thin/medium masks in 256 and run evaluation |
|
# like this: |
|
python3 bin/predict.py \ |
|
model.path=$(pwd)/experiments/<user>_<date:time>_lama-fourier-celeba_/ \ |
|
indir=$(pwd)/celeba-hq-dataset/visual_test_256/random_thick_256/ \ |
|
outdir=$(pwd)/inference/celeba_random_thick_256 model.checkpoint=last.ckpt |
|
|
|
|
|
Docker: TODO |
|
|
|
## Places Challenge |
|
|
|
On the host machine: |
|
|
|
# This script downloads multiple .tar files in parallel and unpacks them |
|
# Places365-Challenge: Train(476GB) from High-resolution images (to train Big-Lama) |
|
bash places_challenge_train_download.sh |
|
|
|
TODO: prepare |
|
TODO: train |
|
TODO: eval |
|
|
|
Docker: TODO |
|
|
|
## Create your data |
|
|
|
Please check bash scripts for data preparation and mask generation from CelebaHQ section, |
|
if you stuck at one of the following steps. |
|
|
|
|
|
On the host machine: |
|
|
|
# Make shure you are in lama folder |
|
cd lama |
|
export TORCH_HOME=$(pwd) && export PYTHONPATH=$(pwd) |
|
|
|
# You need to prepare following image folders: |
|
$ ls my_dataset |
|
train |
|
val_source # 2000 or more images |
|
visual_test_source # 100 or more images |
|
eval_source # 2000 or more images |
|
|
|
# LaMa generates random masks for the train data on the flight, |
|
# but needs fixed masks for test and visual_test for consistency of evaluation. |
|
|
|
# Suppose, we want to evaluate and pick best models |
|
# on 512x512 val dataset with thick/thin/medium masks |
|
# And your images have .jpg extention: |
|
|
|
python3 bin/gen_mask_dataset.py \ |
|
$(pwd)/configs/data_gen/random_<size>_512.yaml \ # thick, thin, medium |
|
my_dataset/val_source/ \ |
|
my_dataset/val/random_<size>_512.yaml \# thick, thin, medium |
|
--ext jpg |
|
|
|
# So the mask generator will: |
|
# 1. resize and crop val images and save them as .png |
|
# 2. generate masks |
|
|
|
ls my_dataset/val/random_medium_512/ |
|
image1_crop000_mask000.png |
|
image1_crop000.png |
|
image2_crop000_mask000.png |
|
image2_crop000.png |
|
... |
|
|
|
# Generate thick, thin, medium masks for visual_test folder: |
|
|
|
python3 bin/gen_mask_dataset.py \ |
|
$(pwd)/configs/data_gen/random_<size>_512.yaml \ #thick, thin, medium |
|
my_dataset/visual_test_source/ \ |
|
my_dataset/visual_test/random_<size>_512/ \ #thick, thin, medium |
|
--ext jpg |
|
|
|
|
|
ls my_dataset/visual_test/random_thick_512/ |
|
image1_crop000_mask000.png |
|
image1_crop000.png |
|
image2_crop000_mask000.png |
|
image2_crop000.png |
|
... |
|
|
|
# Same process for eval_source image folder: |
|
|
|
python3 bin/gen_mask_dataset.py \ |
|
$(pwd)/configs/data_gen/random_<size>_512.yaml \ #thick, thin, medium |
|
my_dataset/eval_source/ \ |
|
my_dataset/eval/random_<size>_512/ \ #thick, thin, medium |
|
--ext jpg |
|
|
|
|
|
|
|
# Generate location config file which locate these folders: |
|
|
|
touch my_dataset.yaml |
|
echo "data_root_dir: $(pwd)/my_dataset/" >> my_dataset.yaml |
|
echo "out_root_dir: $(pwd)/experiments/" >> my_dataset.yaml |
|
echo "tb_dir: $(pwd)/tb_logs/" >> my_dataset.yaml |
|
mv my_dataset.yaml ${PWD}/configs/training/location/ |
|
|
|
|
|
# Check data config for consistency with my_dataset folder structure: |
|
$ cat ${PWD}/configs/training/data/abl-04-256-mh-dist |
|
... |
|
train: |
|
indir: ${location.data_root_dir}/train |
|
... |
|
val: |
|
indir: ${location.data_root_dir}/val |
|
img_suffix: .png |
|
visual_test: |
|
indir: ${location.data_root_dir}/visual_test |
|
img_suffix: .png |
|
|
|
|
|
# Run training |
|
python3 bin/train.py -cn lama-fourier location=my_dataset data.batch_size=10 |
|
|
|
# Evaluation: LaMa training procedure picks best few models according to |
|
# scores on my_dataset/val/ |
|
|
|
# To evaluate one of your best models (i.e. at epoch=32) |
|
# on previously unseen my_dataset/eval do the following |
|
# for thin, thick and medium: |
|
|
|
# infer: |
|
python3 bin/predict.py \ |
|
model.path=$(pwd)/experiments/<user>_<date:time>_lama-fourier_/ \ |
|
indir=$(pwd)/my_dataset/eval/random_<size>_512/ \ |
|
outdir=$(pwd)/inference/my_dataset/random_<size>_512 \ |
|
model.checkpoint=epoch32.ckpt |
|
|
|
# metrics calculation: |
|
python3 bin/evaluate_predicts.py \ |
|
$(pwd)/configs/eval2_gpu.yaml \ |
|
$(pwd)/my_dataset/eval/random_<size>_512/ \ |
|
$(pwd)/inference/my_dataset/random_<size>_512 \ |
|
$(pwd)/inference/my_dataset/random_<size>_512_metrics.csv |
|
|
|
|
|
**OR** in the docker: |
|
|
|
TODO: train |
|
TODO: eval |
|
|
|
# Hints |
|
|
|
### Generate different kinds of masks |
|
The following command will execute a script that generates random masks. |
|
|
|
bash docker/1_generate_masks_from_raw_images.sh \ |
|
configs/data_gen/random_medium_512.yaml \ |
|
/directory_with_input_images \ |
|
/directory_where_to_store_images_and_masks \ |
|
--ext png |
|
|
|
The test data generation command stores images in the format, |
|
which is suitable for [prediction](#prediction). |
|
|
|
The table below describes which configs we used to generate different test sets from the paper. |
|
Note that we *do not fix a random seed*, so the results will be slightly different each time. |
|
|
|
| | Places 512x512 | CelebA 256x256 | |
|
|--------|------------------------|------------------------| |
|
| Narrow | random_thin_512.yaml | random_thin_256.yaml | |
|
| Medium | random_medium_512.yaml | random_medium_256.yaml | |
|
| Wide | random_thick_512.yaml | random_thick_256.yaml | |
|
|
|
Feel free to change the config path (argument #1) to any other config in `configs/data_gen` |
|
or adjust config files themselves. |
|
|
|
### Override parameters in configs |
|
Also you can override parameters in config like this: |
|
|
|
python3 bin/train.py -cn <config> data.batch_size=10 run_title=my-title |
|
|
|
Where .yaml file extension is omitted |
|
|
|
### Models options |
|
Config names for models from paper (substitude into the training command): |
|
|
|
* big-lama |
|
* big-lama-regular |
|
* lama-fourier |
|
* lama-regular |
|
* lama_small_train_masks |
|
|
|
Which are seated in configs/training/folder |
|
|
|
### Links |
|
- All the data (models, test images, etc.) https://disk.yandex.ru/d/AmdeG-bIjmvSug |
|
- Test images from the paper https://disk.yandex.ru/d/xKQJZeVRk5vLlQ |
|
- The pre-trained models https://disk.yandex.ru/d/EgqaSnLohjuzAg |
|
- The models for perceptual loss https://disk.yandex.ru/d/ncVmQlmT_kTemQ |
|
- Our training logs are available at https://disk.yandex.ru/d/9Bt1wNSDS4jDkQ |
|
|
|
|
|
### Training time & resources |
|
|
|
TODO |
|
|
|
## Acknowledgments |
|
|
|
* Segmentation code and models if form [CSAILVision](https://github.com/CSAILVision/semantic-segmentation-pytorch). |
|
* LPIPS metric is from [richzhang](https://github.com/richzhang/PerceptualSimilarity) |
|
* SSIM is from [Po-Hsun-Su](https://github.com/Po-Hsun-Su/pytorch-ssim) |
|
* FID is from [mseitzer](https://github.com/mseitzer/pytorch-fid) |
|
|
|
## Citation |
|
If you found this code helpful, please consider citing: |
|
``` |
|
@article{suvorov2021resolution, |
|
title={Resolution-robust Large Mask Inpainting with Fourier Convolutions}, |
|
author={Suvorov, Roman and Logacheva, Elizaveta and Mashikhin, Anton and Remizova, Anastasia and Ashukha, Arsenii and Silvestrov, Aleksei and Kong, Naejin and Goka, Harshith and Park, Kiwoong and Lempitsky, Victor}, |
|
journal={arXiv preprint arXiv:2109.07161}, |
|
year={2021} |
|
} |
|
``` |
|
|