Spaces:
Sleeping
Sleeping
from typing import List, Dict, Any, Tuple, Union | |
import copy | |
import torch | |
from ding.torch_utils import Adam, RMSprop, to_device | |
from ding.rl_utils import fqf_nstep_td_data, fqf_nstep_td_error, fqf_calculate_fraction_loss, \ | |
get_train_sample, get_nstep_return_data | |
from ding.model import model_wrap | |
from ding.utils import POLICY_REGISTRY | |
from ding.utils.data import default_collate, default_decollate | |
from .dqn import DQNPolicy | |
from .common_utils import default_preprocess_learn | |
class FQFPolicy(DQNPolicy): | |
r""" | |
Overview: | |
Policy class of FQF algorithm. | |
Config: | |
== ==================== ======== ============== ======================================== ======================= | |
ID Symbol Type Default Value Description Other(Shape) | |
== ==================== ======== ============== ======================================== ======================= | |
1 ``type`` str fqf | RL policy register name, refer to | this arg is optional, | |
| registry ``POLICY_REGISTRY`` | a placeholder | |
2 ``cuda`` bool False | Whether to use cuda for network | this arg can be diff- | |
| erent from modes | |
3 ``on_policy`` bool False | Whether the RL algorithm is on-policy | |
| or off-policy | |
4 ``priority`` bool True | Whether use priority(PER) | priority sample, | |
| update priority | |
6 | ``other.eps`` float 0.05 | Start value for epsilon decay. It's | |
| ``.start`` | small because rainbow use noisy net. | |
7 | ``other.eps`` float 0.05 | End value for epsilon decay. | |
| ``.end`` | |
8 | ``discount_`` float 0.97, | Reward's future discount factor, aka. | may be 1 when sparse | |
| ``factor`` [0.95, 0.999] | gamma | reward env | |
9 ``nstep`` int 3, | N-step reward discount sum for target | |
[3, 5] | q_value estimation | |
10 | ``learn.update`` int 3 | How many updates(iterations) to train | this args can be vary | |
| ``per_collect`` | after collector's one collection. Only | from envs. Bigger val | |
| valid in serial training | means more off-policy | |
11 ``learn.kappa`` float / | Threshold of Huber loss | |
== ==================== ======== ============== ======================================== ======================= | |
""" | |
config = dict( | |
# (str) RL policy register name (refer to function "POLICY_REGISTRY"). | |
type='fqf', | |
# (bool) Whether to use cuda for network. | |
cuda=False, | |
# (bool) Whether the RL algorithm is on-policy or off-policy. | |
on_policy=False, | |
# (bool) Whether use priority(priority sample, IS weight, update priority) | |
priority=False, | |
# (float) Reward's future discount factor, aka. gamma. | |
discount_factor=0.97, | |
# (int) N-step reward for target q_value estimation | |
nstep=1, | |
learn=dict( | |
# How many updates(iterations) to train after collector's one collection. | |
# Bigger "update_per_collect" means bigger off-policy. | |
# collect data -> update policy-> collect data -> ... | |
update_per_collect=3, | |
batch_size=64, | |
learning_rate_fraction=2.5e-9, | |
learning_rate_quantile=0.00005, | |
# ============================================================== | |
# The following configs are algorithm-specific | |
# ============================================================== | |
# (int) Frequence of target network update. | |
target_update_freq=100, | |
# (float) Threshold of Huber loss. In the FQF paper, this is denoted by kappa. Default to 1.0. | |
kappa=1.0, | |
# (float) Coefficient of entropy_loss. | |
ent_coef=0, | |
# (bool) Whether ignore done(usually for max step termination env) | |
ignore_done=False, | |
), | |
# collect_mode config | |
collect=dict( | |
# (int) Only one of [n_sample, n_step, n_episode] shoule be set | |
# n_sample=8, | |
# (int) Cut trajectories into pieces with length "unroll_len". | |
unroll_len=1, | |
), | |
eval=dict(), | |
# other config | |
other=dict( | |
# Epsilon greedy with decay. | |
eps=dict( | |
# (str) Decay type. Support ['exp', 'linear']. | |
type='exp', | |
start=0.95, | |
end=0.1, | |
# (int) Decay length(env step) | |
decay=10000, | |
), | |
replay_buffer=dict(replay_buffer_size=10000, ) | |
), | |
) | |
def default_model(self) -> Tuple[str, List[str]]: | |
return 'fqf', ['ding.model.template.q_learning'] | |
def _init_learn(self) -> None: | |
r""" | |
Overview: | |
Learn mode init method. Called by ``self.__init__``. | |
Init the optimizer, algorithm config, main and target models. | |
""" | |
self._priority = self._cfg.priority | |
# Optimizer | |
self._fraction_loss_optimizer = RMSprop( | |
self._model.head.quantiles_proposal.parameters(), | |
lr=self._cfg.learn.learning_rate_fraction, | |
alpha=0.95, | |
eps=0.00001 | |
) | |
self._quantile_loss_optimizer = Adam( | |
list(self._model.head.Q.parameters()) + list(self._model.head.fqf_fc.parameters()) + | |
list(self._model.encoder.parameters()), | |
lr=self._cfg.learn.learning_rate_quantile, | |
eps=1e-2 / self._cfg.learn.batch_size | |
) | |
self._gamma = self._cfg.discount_factor | |
self._nstep = self._cfg.nstep | |
self._kappa = self._cfg.learn.kappa | |
self._ent_coef = self._cfg.learn.ent_coef | |
# use model_wrapper for specialized demands of different modes | |
self._target_model = copy.deepcopy(self._model) | |
self._target_model = model_wrap( | |
self._target_model, | |
wrapper_name='target', | |
update_type='assign', | |
update_kwargs={'freq': self._cfg.learn.target_update_freq} | |
) | |
self._learn_model = model_wrap(self._model, wrapper_name='argmax_sample') | |
self._learn_model.reset() | |
self._target_model.reset() | |
def _forward_learn(self, data: dict) -> Dict[str, Any]: | |
r""" | |
Overview: | |
Forward and backward function of learn mode. | |
Arguments: | |
- data (:obj:`dict`): Dict type data, including at least ['obs', 'action', 'reward', 'next_obs'] | |
Returns: | |
- info_dict (:obj:`Dict[str, Any]`): Including current lr and loss. | |
""" | |
data = default_preprocess_learn( | |
data, use_priority=self._priority, ignore_done=self._cfg.learn.ignore_done, use_nstep=True | |
) | |
if self._cuda: | |
data = to_device(data, self._device) | |
# ==================== | |
# Q-learning forward | |
# ==================== | |
self._learn_model.train() | |
self._target_model.train() | |
# Current q value (main model) | |
ret = self._learn_model.forward(data['obs']) | |
logit = ret['logit'] # [batch, action_dim(64)] | |
q_value = ret['q'] # [batch, num_quantiles, action_dim(64)] | |
quantiles = ret['quantiles'] # [batch, num_quantiles+1] | |
quantiles_hats = ret['quantiles_hats'] # [batch, num_quantiles], requires_grad = False | |
q_tau_i = ret['q_tau_i'] # [batch_size, num_quantiles-1, action_dim(64)] | |
entropies = ret['entropies'] # [batch, 1] | |
# Target q value | |
with torch.no_grad(): | |
target_q_value = self._target_model.forward(data['next_obs'])['q'] | |
# Max q value action (main model) | |
target_q_action = self._learn_model.forward(data['next_obs'])['action'] | |
data_n = fqf_nstep_td_data( | |
q_value, target_q_value, data['action'], target_q_action, data['reward'], data['done'], quantiles_hats, | |
data['weight'] | |
) | |
value_gamma = data.get('value_gamma') | |
entropy_loss = -self._ent_coef * entropies.mean() | |
fraction_loss = fqf_calculate_fraction_loss(q_tau_i.detach(), q_value, quantiles, data['action']) + entropy_loss | |
quantile_loss, td_error_per_sample = fqf_nstep_td_error( | |
data_n, self._gamma, nstep=self._nstep, kappa=self._kappa, value_gamma=value_gamma | |
) | |
# compute grad norm of a network's parameters | |
def compute_grad_norm(model): | |
return torch.norm(torch.stack([torch.norm(p.grad.detach(), 2.0) for p in model.parameters()]), 2.0) | |
# ==================== | |
# fraction_proposal network update | |
# ==================== | |
self._fraction_loss_optimizer.zero_grad() | |
fraction_loss.backward(retain_graph=True) | |
if self._cfg.multi_gpu: | |
self.sync_gradients(self._learn_model) | |
with torch.no_grad(): | |
total_norm_quantiles_proposal = compute_grad_norm(self._model.head.quantiles_proposal) | |
self._fraction_loss_optimizer.step() | |
# ==================== | |
# Q-learning update | |
# ==================== | |
self._quantile_loss_optimizer.zero_grad() | |
quantile_loss.backward() | |
if self._cfg.multi_gpu: | |
self.sync_gradients(self._learn_model) | |
with torch.no_grad(): | |
total_norm_Q = compute_grad_norm(self._model.head.Q) | |
total_norm_fqf_fc = compute_grad_norm(self._model.head.fqf_fc) | |
total_norm_encoder = compute_grad_norm(self._model.encoder) | |
self._quantile_loss_optimizer.step() | |
# ============= | |
# after update | |
# ============= | |
self._target_model.update(self._learn_model.state_dict()) | |
return { | |
'cur_lr_fraction_loss': self._fraction_loss_optimizer.defaults['lr'], | |
'cur_lr_quantile_loss': self._quantile_loss_optimizer.defaults['lr'], | |
'logit': logit.mean().item(), | |
'fraction_loss': fraction_loss.item(), | |
'quantile_loss': quantile_loss.item(), | |
'total_norm_quantiles_proposal': total_norm_quantiles_proposal, | |
'total_norm_Q': total_norm_Q, | |
'total_norm_fqf_fc': total_norm_fqf_fc, | |
'total_norm_encoder': total_norm_encoder, | |
'priority': td_error_per_sample.abs().tolist(), | |
# Only discrete action satisfying len(data['action'])==1 can return this and draw histogram on tensorboard. | |
'[histogram]action_distribution': data['action'], | |
'[histogram]quantiles_hats': quantiles_hats[0], # quantiles_hats.requires_grad = False | |
} | |
def _monitor_vars_learn(self) -> List[str]: | |
return [ | |
'cur_lr_fraction_loss', 'cur_lr_quantile_loss', 'logit', 'fraction_loss', 'quantile_loss', | |
'total_norm_quantiles_proposal', 'total_norm_Q', 'total_norm_fqf_fc', 'total_norm_encoder' | |
] | |
def _state_dict_learn(self) -> Dict[str, Any]: | |
return { | |
'model': self._learn_model.state_dict(), | |
'target_model': self._target_model.state_dict(), | |
'optimizer_fraction_loss': self._fraction_loss_optimizer.state_dict(), | |
'optimizer_quantile_loss': self._quantile_loss_optimizer.state_dict(), | |
} | |
def _load_state_dict_learn(self, state_dict: Dict[str, Any]) -> None: | |
self._learn_model.load_state_dict(state_dict['model']) | |
self._target_model.load_state_dict(state_dict['target_model']) | |
self._fraction_loss_optimizer.load_state_dict(state_dict['optimizer_fraction_loss']) | |
self._quantile_loss_optimizer.load_state_dict(state_dict['optimizer_quantile_loss']) | |