google-gemma / app.py
DHEIVER's picture
Update app.py
b3f1b86 verified
raw
history blame
3.87 kB
import gradio as gr
from huggingface_hub import InferenceClient
import random
models = [
"google/gemma-7b",
"google/gemma-7b-it",
"google/gemma-2b",
"google/gemma-2b-it"
]
clients = [
InferenceClient(models[0]),
InferenceClient(models[1]),
InferenceClient(models[2]),
InferenceClient(models[3]),
]
def format_prompt(message, history):
prompt = ""
if history:
for user_prompt, bot_response in history:
prompt += f"<start_of_turn>usuário{user_prompt}<end_of_turn>"
prompt += f"<start_of_turn>modelo{bot_response}"
prompt += f"<start_of_turn>usuário{message}<end_of_turn><start_of_turn>modelo"
return prompt
def chat_inf(system_prompt, prompt, history, client_choice, seed, temp, tokens, top_p, rep_p):
client = clients[int(client_choice) - 1]
if not history:
history = []
hist_len = 0
if history:
hist_len = len(history)
generate_kwargs = dict(
temperature=temp,
max_new_tokens=tokens,
top_p=top_p,
repetition_penalty=rep_p,
do_sample=True,
seed=seed,
)
formatted_prompt = format_prompt(f"{system_prompt}, {prompt}", history)
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
output = ""
for response in stream:
output += response.token.text
yield [(prompt, output)]
history.append((prompt, output))
yield history
def clear_fn():
return None, None, None
rand_val = random.randint(1, 1111111111111111)
def check_rand(inp, val):
if inp == True:
return gr.Slider(label="Semente", minimum=1, maximum=1111111111111111, value=random.randint(1, 1111111111111111))
else:
return gr.Slider(label="Semente", minimum=1, maximum=1111111111111111, value=int(val))
with gr.Blocks() as app:
gr.HTML("""<center><h1 style='font-size:xx-large;'>Modelos Google Gemma</h1><br><h3>Executando no Cliente de Inferência Huggingface</h3><br><h7>EXPERIMENTAL""")
chat_b = gr.Chatbot(height=500)
with gr.Group():
with gr.Row():
with gr.Column(scale=3):
inp = gr.Textbox(label="Prompt")
sys_inp = gr.Textbox(label="Prompt do Sistema (opcional)")
with gr.Row():
with gr.Column(scale=2):
btn = gr.Button("Conversar")
with gr.Column(scale=1):
with gr.Group():
stop_btn = gr.Button("Parar")
clear_btn = gr.Button("Limpar")
client_choice = gr.Dropdown(label="Modelos", type='index', choices=[c for c in models], value=models[0], interactive=True)
with gr.Column(scale=1):
with gr.Group():
rand = gr.Checkbox(label="Semente Aleatória", value=True)
seed = gr.Slider(label="Semente", minimum=1, maximum=1111111111111111, step=1, value=rand_val)
tokens = gr.Slider(label="Máximo de novos tokens", value=6400, minimum=0, maximum=8000, step=64, interactive=True, visible=True, info="O número máximo de tokens")
temp = gr.Slider(label="Temperatura", step=0.01, minimum=0.01, maximum=1.0, value=0.9)
top_p = gr.Slider(label="Top-P", step=0.01, minimum=0.01, maximum=1.0, value=0.9)
rep_p = gr.Slider(label="Penalidade de Repetição", step=0.1, minimum=0.1, maximum=2.0, value=1.0)
go = btn.click(check_rand, [rand, seed], seed).then(chat_inf, [sys_inp, inp, chat_b, client_choice, seed, temp, tokens, top_p, rep_p], chat_b)
stop_btn.click(None, None, None, cancels=go)
clear_btn.click(clear_fn, None, [inp, sys_inp, chat_b])
app.queue(default_concurrency_limit=10).launch()