Spaces:
Runtime error
Runtime error
import gradio as gr | |
from huggingface_hub import InferenceClient | |
import random | |
models = [ | |
"google/gemma-7b", | |
"google/gemma-7b-it", | |
"google/gemma-2b", | |
"google/gemma-2b-it" | |
] | |
clients = [ | |
InferenceClient(models[0]), | |
InferenceClient(models[1]), | |
InferenceClient(models[2]), | |
InferenceClient(models[3]), | |
] | |
def format_prompt(message, history): | |
prompt = "" | |
if history: | |
for user_prompt, bot_response in history: | |
prompt += f"<start_of_turn>usuário{user_prompt}<end_of_turn>" | |
prompt += f"<start_of_turn>modelo{bot_response}" | |
prompt += f"<start_of_turn>usuário{message}<end_of_turn><start_of_turn>modelo" | |
return prompt | |
def chat_inf(system_prompt, prompt, history, client_choice, seed, temp, tokens, top_p, rep_p): | |
client = clients[int(client_choice) - 1] | |
if not history: | |
history = [] | |
hist_len = 0 | |
if history: | |
hist_len = len(history) | |
generate_kwargs = dict( | |
temperature=temp, | |
max_new_tokens=tokens, | |
top_p=top_p, | |
repetition_penalty=rep_p, | |
do_sample=True, | |
seed=seed, | |
) | |
formatted_prompt = format_prompt(f"{system_prompt}, {prompt}", history) | |
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False) | |
output = "" | |
for response in stream: | |
output += response.token.text | |
yield [(prompt, output)] | |
history.append((prompt, output)) | |
yield history | |
def clear_fn(): | |
return None, None, None | |
rand_val = random.randint(1, 1111111111111111) | |
def check_rand(inp, val): | |
if inp == True: | |
return gr.Slider(label="Semente", minimum=1, maximum=1111111111111111, value=random.randint(1, 1111111111111111)) | |
else: | |
return gr.Slider(label="Semente", minimum=1, maximum=1111111111111111, value=int(val)) | |
with gr.Blocks() as app: | |
gr.HTML("""<center><h1 style='font-size:xx-large;'>Modelos Google Gemma</h1><br><h3>Executando no Cliente de Inferência Huggingface</h3><br><h7>EXPERIMENTAL""") | |
chat_b = gr.Chatbot(height=500) | |
with gr.Group(): | |
with gr.Row(): | |
with gr.Column(scale=3): | |
inp = gr.Textbox(label="Prompt") | |
sys_inp = gr.Textbox(label="Prompt do Sistema (opcional)") | |
with gr.Row(): | |
with gr.Column(scale=2): | |
btn = gr.Button("Conversar") | |
with gr.Column(scale=1): | |
with gr.Group(): | |
stop_btn = gr.Button("Parar") | |
clear_btn = gr.Button("Limpar") | |
client_choice = gr.Dropdown(label="Modelos", type='index', choices=[c for c in models], value=models[0], interactive=True) | |
with gr.Column(scale=1): | |
with gr.Group(): | |
rand = gr.Checkbox(label="Semente Aleatória", value=True) | |
seed = gr.Slider(label="Semente", minimum=1, maximum=1111111111111111, step=1, value=rand_val) | |
tokens = gr.Slider(label="Máximo de novos tokens", value=6400, minimum=0, maximum=8000, step=64, interactive=True, visible=True, info="O número máximo de tokens") | |
temp = gr.Slider(label="Temperatura", step=0.01, minimum=0.01, maximum=1.0, value=0.9) | |
top_p = gr.Slider(label="Top-P", step=0.01, minimum=0.01, maximum=1.0, value=0.9) | |
rep_p = gr.Slider(label="Penalidade de Repetição", step=0.1, minimum=0.1, maximum=2.0, value=1.0) | |
go = btn.click(check_rand, [rand, seed], seed).then(chat_inf, [sys_inp, inp, chat_b, client_choice, seed, temp, tokens, top_p, rep_p], chat_b) | |
stop_btn.click(None, None, None, cancels=go) | |
clear_btn.click(clear_fn, None, [inp, sys_inp, chat_b]) | |
app.queue(default_concurrency_limit=10).launch() | |