|
|
|
|
|
|
|
|
|
|
|
|
|
import julius |
|
import torch |
|
import pytest |
|
|
|
from audiocraft.data.audio_utils import ( |
|
_clip_wav, |
|
convert_audio_channels, |
|
convert_audio, |
|
normalize_audio |
|
) |
|
from ..common_utils import get_batch_white_noise |
|
|
|
|
|
class TestConvertAudioChannels: |
|
|
|
def test_convert_audio_channels_downmix(self): |
|
b, c, t = 2, 3, 100 |
|
audio = get_batch_white_noise(b, c, t) |
|
mixed = convert_audio_channels(audio, channels=2) |
|
assert list(mixed.shape) == [b, 2, t] |
|
|
|
def test_convert_audio_channels_nochange(self): |
|
b, c, t = 2, 3, 100 |
|
audio = get_batch_white_noise(b, c, t) |
|
mixed = convert_audio_channels(audio, channels=c) |
|
assert list(mixed.shape) == list(audio.shape) |
|
|
|
def test_convert_audio_channels_upmix(self): |
|
b, c, t = 2, 1, 100 |
|
audio = get_batch_white_noise(b, c, t) |
|
mixed = convert_audio_channels(audio, channels=3) |
|
assert list(mixed.shape) == [b, 3, t] |
|
|
|
def test_convert_audio_channels_upmix_error(self): |
|
b, c, t = 2, 2, 100 |
|
audio = get_batch_white_noise(b, c, t) |
|
with pytest.raises(ValueError): |
|
convert_audio_channels(audio, channels=3) |
|
|
|
|
|
class TestConvertAudio: |
|
|
|
def test_convert_audio_channels_downmix(self): |
|
b, c, dur = 2, 3, 4. |
|
sr = 128 |
|
audio = get_batch_white_noise(b, c, int(sr * dur)) |
|
out = convert_audio(audio, from_rate=sr, to_rate=sr, to_channels=2) |
|
assert list(out.shape) == [audio.shape[0], 2, audio.shape[-1]] |
|
|
|
def test_convert_audio_channels_upmix(self): |
|
b, c, dur = 2, 1, 4. |
|
sr = 128 |
|
audio = get_batch_white_noise(b, c, int(sr * dur)) |
|
out = convert_audio(audio, from_rate=sr, to_rate=sr, to_channels=3) |
|
assert list(out.shape) == [audio.shape[0], 3, audio.shape[-1]] |
|
|
|
def test_convert_audio_upsample(self): |
|
b, c, dur = 2, 1, 4. |
|
sr = 2 |
|
new_sr = 3 |
|
audio = get_batch_white_noise(b, c, int(sr * dur)) |
|
out = convert_audio(audio, from_rate=sr, to_rate=new_sr, to_channels=c) |
|
out_j = julius.resample.resample_frac(audio, old_sr=sr, new_sr=new_sr) |
|
assert torch.allclose(out, out_j) |
|
|
|
def test_convert_audio_resample(self): |
|
b, c, dur = 2, 1, 4. |
|
sr = 3 |
|
new_sr = 2 |
|
audio = get_batch_white_noise(b, c, int(sr * dur)) |
|
out = convert_audio(audio, from_rate=sr, to_rate=new_sr, to_channels=c) |
|
out_j = julius.resample.resample_frac(audio, old_sr=sr, new_sr=new_sr) |
|
assert torch.allclose(out, out_j) |
|
|
|
|
|
class TestNormalizeAudio: |
|
|
|
def test_clip_wav(self): |
|
b, c, dur = 2, 1, 4. |
|
sr = 3 |
|
audio = 10.0 * get_batch_white_noise(b, c, int(sr * dur)) |
|
_clip_wav(audio) |
|
assert audio.abs().max() <= 1 |
|
|
|
def test_normalize_audio_clip(self): |
|
b, c, dur = 2, 1, 4. |
|
sr = 3 |
|
audio = 10.0 * get_batch_white_noise(b, c, int(sr * dur)) |
|
norm_audio = normalize_audio(audio, strategy='clip') |
|
assert norm_audio.abs().max() <= 1 |
|
|
|
def test_normalize_audio_rms(self): |
|
b, c, dur = 2, 1, 4. |
|
sr = 3 |
|
audio = 10.0 * get_batch_white_noise(b, c, int(sr * dur)) |
|
norm_audio = normalize_audio(audio, strategy='rms') |
|
assert norm_audio.abs().max() <= 1 |
|
|
|
def test_normalize_audio_peak(self): |
|
b, c, dur = 2, 1, 4. |
|
sr = 3 |
|
audio = 10.0 * get_batch_white_noise(b, c, int(sr * dur)) |
|
norm_audio = normalize_audio(audio, strategy='peak') |
|
assert norm_audio.abs().max() <= 1 |
|
|