|
|
|
|
|
|
|
|
|
|
|
|
|
from pathlib import Path |
|
import typing as tp |
|
|
|
import torch |
|
import torchaudio |
|
|
|
|
|
def get_white_noise(chs: int = 1, num_frames: int = 1): |
|
wav = torch.randn(chs, num_frames) |
|
return wav |
|
|
|
|
|
def get_batch_white_noise(bs: int = 1, chs: int = 1, num_frames: int = 1): |
|
wav = torch.randn(bs, chs, num_frames) |
|
return wav |
|
|
|
|
|
def save_wav(path: str, wav: torch.Tensor, sample_rate: int): |
|
fp = Path(path) |
|
kwargs: tp.Dict[str, tp.Any] = {} |
|
if fp.suffix == '.wav': |
|
kwargs['encoding'] = 'PCM_S' |
|
kwargs['bits_per_sample'] = 16 |
|
elif fp.suffix == '.mp3': |
|
kwargs['compression'] = 320 |
|
torchaudio.save(str(fp), wav, sample_rate, **kwargs) |
|
|