OFA-Visual_Grounding / fairseq /examples /fast_noisy_channel /noisy_channel_sequence_generator.py
JustinLin610
update
10b0761
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from typing import Dict, List, Optional
import math
import numpy as np
import torch
import torch.nn.functional as F
from torch import Tensor
from .noisy_channel_beam_search import NoisyChannelBeamSearch
from fairseq.sequence_generator import EnsembleModel
class NoisyChannelSequenceGenerator(object):
def __init__(
self,
combine_method,
tgt_dict,
src_dict=None,
beam_size=1,
max_len_a=0,
max_len_b=200,
min_len=1,
len_penalty=1.0,
unk_penalty=0.0,
retain_dropout=False,
temperature=1.0,
match_source_len=False,
no_repeat_ngram_size=0,
normalize_scores=True,
channel_models=None,
k2=10,
ch_weight=1.0,
channel_scoring_type='log_norm',
top_k_vocab=0,
lm_models=None,
lm_dict=None,
lm_weight=1.0,
normalize_lm_scores_by_tgt_len=False,
):
"""Generates translations of a given source sentence,
using beam search with noisy channel decoding.
Args:
combine_method (string, optional): Method to combine direct, LM and
channel model scores (default: None)
tgt_dict (~fairseq.data.Dictionary): target dictionary
src_dict (~fairseq.data.Dictionary): source dictionary
beam_size (int, optional): beam width (default: 1)
max_len_a/b (int, optional): generate sequences of maximum length
ax + b, where x is the source length
min_len (int, optional): the minimum length of the generated output
(not including end-of-sentence)
len_penalty (float, optional): length penalty, where <1.0 favors
shorter, >1.0 favors longer sentences (default: 1.0)
unk_penalty (float, optional): unknown word penalty, where <0
produces more unks, >0 produces fewer (default: 0.0)
retain_dropout (bool, optional): use dropout when generating
(default: False)
temperature (float, optional): temperature, where values
>1.0 produce more uniform samples and values <1.0 produce
sharper samples (default: 1.0)
match_source_len (bool, optional): outputs should match the source
length (default: False)
no_repeat_ngram_size (int, optional): Size of n-grams that we avoid
repeating in the generation (default: 0)
normalize_scores (bool, optional): normalize scores by the length
of the output (default: True)
channel_models (List[~fairseq.models.FairseqModel]): ensemble of models
translating from the target to the source
k2 (int, optional): Top K2 candidates to score per beam at each step (default:10)
ch_weight (int, optional): Weight associated with the channel model score
assuming that the direct model score has weight 1.0 (default: 1.0)
channel_scoring_type (str, optional): String specifying how to score
the channel model (default: 'log_norm')
top_k_vocab (int, optional): If `channel_scoring_type` is `'src_vocab'` or
`'src_vocab_batched'`, then this parameter specifies the number of
most frequent tokens to include in the channel model output vocabulary,
in addition to the source tokens in the input batch (default: 0)
lm_models (List[~fairseq.models.FairseqModel]): ensemble of models
generating text in the target language
lm_dict (~fairseq.data.Dictionary): LM Model dictionary
lm_weight (int, optional): Weight associated with the LM model score
assuming that the direct model score has weight 1.0 (default: 1.0)
normalize_lm_scores_by_tgt_len (bool, optional): Should we normalize LM scores
by the target length? By default, we normalize the combination of
LM and channel model scores by the source length
"""
self.pad = tgt_dict.pad()
self.unk = tgt_dict.unk()
self.eos = tgt_dict.eos()
self.vocab_size = len(tgt_dict)
self.beam_size = beam_size
# the max beam size is the dictionary size - 1, since we never select pad
self.beam_size = min(beam_size, self.vocab_size - 1)
self.max_len_a = max_len_a
self.max_len_b = max_len_b
self.min_len = min_len
self.normalize_scores = normalize_scores
self.len_penalty = len_penalty
self.unk_penalty = unk_penalty
self.retain_dropout = retain_dropout
self.temperature = temperature
self.match_source_len = match_source_len
self.no_repeat_ngram_size = no_repeat_ngram_size
self.channel_models = channel_models
self.src_dict = src_dict
self.tgt_dict = tgt_dict
self.combine_method = combine_method
self.k2 = k2
self.ch_weight = ch_weight
self.channel_scoring_type = channel_scoring_type
self.top_k_vocab = top_k_vocab
self.lm_models = lm_models
self.lm_dict = lm_dict
self.lm_weight = lm_weight
self.log_softmax_fn = torch.nn.LogSoftmax(dim=1)
self.normalize_lm_scores_by_tgt_len = normalize_lm_scores_by_tgt_len
self.share_tgt_dict = (self.lm_dict == self.tgt_dict)
self.tgt_to_lm = make_dict2dict(tgt_dict, lm_dict)
self.ch_scoring_bsz = 3072
assert temperature > 0, '--temperature must be greater than 0'
self.search = NoisyChannelBeamSearch(tgt_dict)
@torch.no_grad()
def generate(
self,
models,
sample,
prefix_tokens=None,
bos_token=None,
**kwargs
):
"""Generate a batch of translations.
Args:
models (List[~fairseq.models.FairseqModel]): ensemble of models
sample (dict): batch
prefix_tokens (torch.LongTensor, optional): force decoder to begin
with these tokens
"""
model = EnsembleModel(models)
incremental_states = torch.jit.annotate(
List[Dict[str, Dict[str, Optional[Tensor]]]],
[
torch.jit.annotate(Dict[str, Dict[str, Optional[Tensor]]], {})
for i in range(model.models_size)
],
)
if not self.retain_dropout:
model.eval()
# model.forward normally channels prev_output_tokens into the decoder
# separately, but SequenceGenerator directly calls model.encoder
encoder_input = {
k: v for k, v in sample['net_input'].items()
if k != 'prev_output_tokens'
}
src_tokens = encoder_input['src_tokens']
src_lengths_no_eos = (src_tokens.ne(self.eos) & src_tokens.ne(self.pad)).long().sum(dim=1)
input_size = src_tokens.size()
# batch dimension goes first followed by source lengths
bsz = input_size[0]
src_len = input_size[1]
beam_size = self.beam_size
if self.match_source_len:
max_len = src_lengths_no_eos.max().item()
else:
max_len = min(
int(self.max_len_a * src_len + self.max_len_b),
# exclude the EOS marker
model.max_decoder_positions() - 1,
)
# compute the encoder output for each beam
encoder_outs = model.forward_encoder(encoder_input)
new_order = torch.arange(bsz).view(-1, 1).repeat(1, beam_size).view(-1)
new_order = new_order.to(src_tokens.device).long()
encoder_outs = model.reorder_encoder_out(encoder_outs, new_order)
src_lengths = encoder_input['src_lengths']
# initialize buffers
scores = src_tokens.new(bsz * beam_size, max_len + 1).float().fill_(0)
lm_prefix_scores = src_tokens.new(bsz * beam_size).float().fill_(0)
scores_buf = scores.clone()
tokens = src_tokens.new(bsz * beam_size, max_len + 2).long().fill_(self.pad)
tokens_buf = tokens.clone()
tokens[:, 0] = self.eos if bos_token is None else bos_token
# reorder source tokens so they may be used as a reference in generating P(S|T)
src_tokens = reorder_all_tokens(src_tokens, src_lengths, self.src_dict.eos_index)
src_tokens = src_tokens.repeat(1, beam_size).view(-1, src_len)
src_lengths = src_lengths.view(bsz, -1).repeat(1, beam_size).view(bsz*beam_size, -1)
attn, attn_buf = None, None
nonpad_idxs = None
# The cands_to_ignore indicates candidates that should be ignored.
# For example, suppose we're sampling and have already finalized 2/5
# samples. Then the cands_to_ignore would mark 2 positions as being ignored,
# so that we only finalize the remaining 3 samples.
cands_to_ignore = src_tokens.new_zeros(bsz, beam_size).eq(-1) # forward and backward-compatible False mask
# list of completed sentences
finalized = [[] for i in range(bsz)]
finished = [False for i in range(bsz)]
num_remaining_sent = bsz
# number of candidate hypos per step
cand_size = 2 * beam_size # 2 x beam size in case half are EOS
# offset arrays for converting between different indexing schemes
bbsz_offsets = (torch.arange(0, bsz) * beam_size).unsqueeze(1).type_as(tokens)
cand_offsets = torch.arange(0, cand_size).type_as(tokens)
# helper function for allocating buffers on the fly
buffers = {}
def buffer(name, type_of=tokens): # noqa
if name not in buffers:
buffers[name] = type_of.new()
return buffers[name]
def is_finished(sent, step, unfin_idx):
"""
Check whether we've finished generation for a given sentence, by
comparing the worst score among finalized hypotheses to the best
possible score among unfinalized hypotheses.
"""
assert len(finalized[sent]) <= beam_size
if len(finalized[sent]) == beam_size:
return True
return False
def finalize_hypos(step, bbsz_idx, eos_scores, combined_noisy_channel_eos_scores):
"""
Finalize the given hypotheses at this step, while keeping the total
number of finalized hypotheses per sentence <= beam_size.
Note: the input must be in the desired finalization order, so that
hypotheses that appear earlier in the input are preferred to those
that appear later.
Args:
step: current time step
bbsz_idx: A vector of indices in the range [0, bsz*beam_size),
indicating which hypotheses to finalize
eos_scores: A vector of the same size as bbsz_idx containing
fw scores for each hypothesis
combined_noisy_channel_eos_scores: A vector of the same size as bbsz_idx containing
combined noisy channel scores for each hypothesis
"""
assert bbsz_idx.numel() == eos_scores.numel()
# clone relevant token and attention tensors
tokens_clone = tokens.index_select(0, bbsz_idx)
tokens_clone = tokens_clone[:, 1:step + 2] # skip the first index, which is EOS
assert not tokens_clone.eq(self.eos).any()
tokens_clone[:, step] = self.eos
attn_clone = attn.index_select(0, bbsz_idx)[:, :, 1:step+2] if attn is not None else None
# compute scores per token position
pos_scores = scores.index_select(0, bbsz_idx)[:, :step+1]
pos_scores[:, step] = eos_scores
# convert from cumulative to per-position scores
pos_scores[:, 1:] = pos_scores[:, 1:] - pos_scores[:, :-1]
# normalize sentence-level scores
if self.normalize_scores:
combined_noisy_channel_eos_scores /= (step + 1) ** self.len_penalty
cum_unfin = []
prev = 0
for f in finished:
if f:
prev += 1
else:
cum_unfin.append(prev)
sents_seen = set()
for i, (idx, score) in enumerate(zip(bbsz_idx.tolist(), combined_noisy_channel_eos_scores.tolist())):
unfin_idx = idx // beam_size
sent = unfin_idx + cum_unfin[unfin_idx]
sents_seen.add((sent, unfin_idx))
if self.match_source_len and step > src_lengths_no_eos[unfin_idx]:
score = -math.inf
def get_hypo():
if attn_clone is not None:
# remove padding tokens from attn scores
hypo_attn = attn_clone[i][nonpad_idxs[sent]]
_, alignment = hypo_attn.max(dim=0)
else:
hypo_attn = None
alignment = None
return {
'tokens': tokens_clone[i],
'score': score,
'attention': hypo_attn, # src_len x tgt_len
'alignment': alignment,
'positional_scores': pos_scores[i],
}
if len(finalized[sent]) < beam_size:
finalized[sent].append(get_hypo())
newly_finished = []
for sent, unfin_idx in sents_seen:
# check termination conditions for this sentence
if not finished[sent] and is_finished(sent, step, unfin_idx):
finished[sent] = True
newly_finished.append(unfin_idx)
return newly_finished
def noisy_channel_rescoring(lprobs, beam_size, bsz, src_tokens, tokens, k):
"""Rescore the top k hypothesis from each beam using noisy channel modeling
Returns:
new_fw_lprobs: the direct model probabilities after pruning the top k
new_ch_lm_lprobs: the combined channel and language model probabilities
new_lm_lprobs: the language model probabilities after pruning the top k
"""
with torch.no_grad():
lprobs_size = lprobs.size()
if prefix_tokens is not None and step < prefix_tokens.size(1):
probs_slice = lprobs.view(bsz, -1, lprobs.size(-1))[:, 0, :]
cand_scores = torch.gather(
probs_slice, dim=1,
index=prefix_tokens[:, step].view(-1, 1).data
).expand(-1, beam_size).contiguous().view(bsz*beam_size, 1)
cand_indices = prefix_tokens[:, step].view(-1, 1).expand(bsz, beam_size).data.contiguous().view(bsz*beam_size, 1)
# need to calculate and save fw and lm probs for prefix tokens
fw_top_k = cand_scores
fw_top_k_idx = cand_indices
k = 1
else:
# take the top k best words for every sentence in batch*beam
fw_top_k, fw_top_k_idx = torch.topk(lprobs.view(beam_size*bsz, -1), k=k)
eos_idx = torch.nonzero(fw_top_k_idx.view(bsz*beam_size*k, -1) == self.eos)[:, 0]
ch_scores = fw_top_k.new_full((beam_size*bsz*k, ), 0)
src_size = torch.sum(src_tokens[:, :] != self.src_dict.pad_index, dim=1, keepdim=True, dtype=fw_top_k.dtype)
if self.combine_method != "lm_only":
temp_src_tokens_full = src_tokens[:, :].repeat(1, k).view(bsz*beam_size*k, -1)
not_padding = temp_src_tokens_full[:, 1:] != self.src_dict.pad_index
cur_tgt_size = step+2
# add eos to all candidate sentences except those that already end in eos
eos_tokens = tokens[:, 0].repeat(1, k).view(-1, 1)
eos_tokens[eos_idx] = self.tgt_dict.pad_index
if step == 0:
channel_input = torch.cat((fw_top_k_idx.view(-1, 1), eos_tokens), 1)
else:
# move eos from beginning to end of target sentence
channel_input = torch.cat((tokens[:, 1:step + 1].repeat(1, k).view(-1, step), fw_top_k_idx.view(-1, 1), eos_tokens), 1)
ch_input_lengths = torch.tensor(np.full(channel_input.size(0), cur_tgt_size))
ch_input_lengths[eos_idx] = cur_tgt_size-1
if self.channel_scoring_type == "unnormalized":
ch_encoder_output = channel_model.encoder(channel_input, src_lengths=ch_input_lengths)
ch_decoder_output, _ = channel_model.decoder(temp_src_tokens_full, encoder_out=ch_encoder_output, features_only=True)
del ch_encoder_output
ch_intermed_scores = channel_model.decoder.unnormalized_scores_given_target(ch_decoder_output, target_ids=temp_src_tokens_full[:, 1:])
ch_intermed_scores = ch_intermed_scores.float()
ch_intermed_scores *= not_padding.float()
ch_scores = torch.sum(ch_intermed_scores, dim=1)
elif self.channel_scoring_type == "k2_separate":
for k_idx in range(k):
k_eos_tokens = eos_tokens[k_idx::k, :]
if step == 0:
k_ch_input = torch.cat((fw_top_k_idx[:, k_idx:k_idx+1], k_eos_tokens), 1)
else:
# move eos from beginning to end of target sentence
k_ch_input = torch.cat((tokens[:, 1:step + 1], fw_top_k_idx[:, k_idx:k_idx+1], k_eos_tokens), 1)
k_ch_input_lengths = ch_input_lengths[k_idx::k]
k_ch_output = channel_model(k_ch_input, k_ch_input_lengths, src_tokens)
k_ch_lprobs = channel_model.get_normalized_probs(k_ch_output, log_probs=True)
k_ch_intermed_scores = torch.gather(k_ch_lprobs[:, :-1, :], 2, src_tokens[:, 1:].unsqueeze(2)).squeeze(2)
k_ch_intermed_scores *= not_padding.float()
ch_scores[k_idx::k] = torch.sum(k_ch_intermed_scores, dim=1)
elif self.channel_scoring_type == "src_vocab":
ch_encoder_output = channel_model.encoder(channel_input, src_lengths=ch_input_lengths)
ch_decoder_output, _ = channel_model.decoder(temp_src_tokens_full, encoder_out=ch_encoder_output, features_only=True)
del ch_encoder_output
ch_lprobs = normalized_scores_with_batch_vocab(
channel_model.decoder,
ch_decoder_output, src_tokens, k, bsz, beam_size,
self.src_dict.pad_index, top_k=self.top_k_vocab)
ch_scores = torch.sum(ch_lprobs, dim=1)
elif self.channel_scoring_type == "src_vocab_batched":
ch_bsz_size = temp_src_tokens_full.shape[0]
ch_lprobs_list = [None] * len(range(0, ch_bsz_size, self.ch_scoring_bsz))
for i, start_idx in enumerate(range(0, ch_bsz_size, self.ch_scoring_bsz)):
end_idx = min(start_idx + self.ch_scoring_bsz, ch_bsz_size)
temp_src_tokens_full_batch = temp_src_tokens_full[start_idx:end_idx, :]
channel_input_batch = channel_input[start_idx:end_idx, :]
ch_input_lengths_batch = ch_input_lengths[start_idx:end_idx]
ch_encoder_output_batch = channel_model.encoder(channel_input_batch, src_lengths=ch_input_lengths_batch)
ch_decoder_output_batch, _ = channel_model.decoder(temp_src_tokens_full_batch, encoder_out=ch_encoder_output_batch, features_only=True)
ch_lprobs_list[i] = normalized_scores_with_batch_vocab(
channel_model.decoder,
ch_decoder_output_batch, src_tokens, k, bsz, beam_size,
self.src_dict.pad_index, top_k=self.top_k_vocab,
start_idx=start_idx, end_idx=end_idx)
ch_lprobs = torch.cat(ch_lprobs_list, dim=0)
ch_scores = torch.sum(ch_lprobs, dim=1)
else:
ch_output = channel_model(channel_input, ch_input_lengths, temp_src_tokens_full)
ch_lprobs = channel_model.get_normalized_probs(ch_output, log_probs=True)
ch_intermed_scores = torch.gather(ch_lprobs[:, :-1, :], 2, temp_src_tokens_full[:, 1:].unsqueeze(2)).squeeze().view(bsz*beam_size*k, -1)
ch_intermed_scores *= not_padding.float()
ch_scores = torch.sum(ch_intermed_scores, dim=1)
else:
cur_tgt_size = 0
ch_scores = ch_scores.view(bsz*beam_size, k)
expanded_lm_prefix_scores = lm_prefix_scores.unsqueeze(1).expand(-1, k).flatten()
if self.share_tgt_dict:
lm_scores = get_lm_scores(lm, tokens[:, :step + 1].view(-1, step+1), lm_incremental_states, fw_top_k_idx.view(-1, 1), torch.tensor(np.full(tokens.size(0), step+1)), k)
else:
new_lm_input = dict2dict(tokens[:, :step + 1].view(-1, step+1), self.tgt_to_lm)
new_cands = dict2dict(fw_top_k_idx.view(-1, 1), self.tgt_to_lm)
lm_scores = get_lm_scores(lm, new_lm_input, lm_incremental_states, new_cands, torch.tensor(np.full(tokens.size(0), step+1)), k)
lm_scores.add_(expanded_lm_prefix_scores)
ch_lm_scores = combine_ch_lm(self.combine_method, ch_scores, lm_scores, src_size, cur_tgt_size)
# initialize all as min value
new_fw_lprobs = ch_scores.new(lprobs_size).fill_(-1e17).view(bsz*beam_size, -1)
new_ch_lm_lprobs = ch_scores.new(lprobs_size).fill_(-1e17).view(bsz*beam_size, -1)
new_lm_lprobs = ch_scores.new(lprobs_size).fill_(-1e17).view(bsz*beam_size, -1)
new_fw_lprobs[:, self.pad] = -math.inf
new_ch_lm_lprobs[:, self.pad] = -math.inf
new_lm_lprobs[:, self.pad] = -math.inf
new_fw_lprobs.scatter_(1, fw_top_k_idx, fw_top_k)
new_ch_lm_lprobs.scatter_(1, fw_top_k_idx, ch_lm_scores)
new_lm_lprobs.scatter_(1, fw_top_k_idx, lm_scores.view(-1, k))
return new_fw_lprobs, new_ch_lm_lprobs, new_lm_lprobs
def combine_ch_lm(combine_type, ch_scores, lm_scores1, src_size, tgt_size):
if self.channel_scoring_type == "unnormalized":
ch_scores = self.log_softmax_fn(
ch_scores.view(-1, self.beam_size * self.k2)
).view(ch_scores.shape)
ch_scores = ch_scores * self.ch_weight
lm_scores1 = lm_scores1 * self.lm_weight
if combine_type == "lm_only":
# log P(T|S) + log P(T)
ch_scores = lm_scores1.view(ch_scores.size())
elif combine_type == "noisy_channel":
# 1/t log P(T|S) + 1/s log P(S|T) + 1/t log P(T)
if self.normalize_lm_scores_by_tgt_len:
ch_scores.div_(src_size)
lm_scores_norm = lm_scores1.view(ch_scores.size()).div(tgt_size)
ch_scores.add_(lm_scores_norm)
# 1/t log P(T|S) + 1/s log P(S|T) + 1/s log P(T)
else:
ch_scores.add_(lm_scores1.view(ch_scores.size()))
ch_scores.div_(src_size)
return ch_scores
if self.channel_models is not None:
channel_model = self.channel_models[0] # assume only one channel_model model
else:
channel_model = None
lm = EnsembleModel(self.lm_models)
lm_incremental_states = torch.jit.annotate(
List[Dict[str, Dict[str, Optional[Tensor]]]],
[
torch.jit.annotate(Dict[str, Dict[str, Optional[Tensor]]], {})
for i in range(lm.models_size)
],
)
reorder_state = None
batch_idxs = None
for step in range(max_len + 1): # one extra step for EOS marker
# reorder decoder internal states based on the prev choice of beams
if reorder_state is not None:
if batch_idxs is not None:
# update beam indices to take into account removed sentences
corr = batch_idxs - torch.arange(batch_idxs.numel()).type_as(batch_idxs)
reorder_state.view(-1, beam_size).add_(corr.unsqueeze(-1) * beam_size)
model.reorder_incremental_state(incremental_states, reorder_state)
encoder_outs = model.reorder_encoder_out(encoder_outs, reorder_state)
lm.reorder_incremental_state(lm_incremental_states, reorder_state)
fw_lprobs, avg_attn_scores = model.forward_decoder(
tokens[:, :step + 1], encoder_outs, incremental_states, temperature=self.temperature,
)
fw_lprobs[:, self.pad] = -math.inf # never select pad
fw_lprobs[:, self.unk] -= self.unk_penalty # apply unk penalty
fw_lprobs, ch_lm_lprobs, lm_lprobs = noisy_channel_rescoring(fw_lprobs, beam_size, bsz, src_tokens, tokens, self.k2)
# handle min and max length constraints
if step >= max_len:
fw_lprobs[:, :self.eos] = -math.inf
fw_lprobs[:, self.eos + 1:] = -math.inf
elif step < self.min_len:
fw_lprobs[:, self.eos] = -math.inf
# handle prefix tokens (possibly with different lengths)
if prefix_tokens is not None and step < prefix_tokens.size(1):
prefix_toks = prefix_tokens[:, step].unsqueeze(-1).repeat(1, beam_size).view(-1)
prefix_mask = prefix_toks.ne(self.pad)
prefix_fw_lprobs = fw_lprobs.gather(-1, prefix_toks.unsqueeze(-1))
fw_lprobs[prefix_mask] = -math.inf
fw_lprobs[prefix_mask] = fw_lprobs[prefix_mask].scatter_(
-1, prefix_toks[prefix_mask].unsqueeze(-1), prefix_fw_lprobs
)
prefix_ch_lm_lprobs = ch_lm_lprobs.gather(-1, prefix_toks.unsqueeze(-1))
ch_lm_lprobs[prefix_mask] = -math.inf
ch_lm_lprobs[prefix_mask] = ch_lm_lprobs[prefix_mask].scatter_(
-1, prefix_toks[prefix_mask].unsqueeze(-1), prefix_ch_lm_lprobs
)
prefix_lm_lprobs = lm_lprobs.gather(-1, prefix_toks.unsqueeze(-1))
lm_lprobs[prefix_mask] = -math.inf
lm_lprobs[prefix_mask] = lm_lprobs[prefix_mask].scatter_(
-1, prefix_toks[prefix_mask].unsqueeze(-1), prefix_lm_lprobs
)
# if prefix includes eos, then we should make sure tokens and
# scores are the same across all beams
eos_mask = prefix_toks.eq(self.eos)
if eos_mask.any():
# validate that the first beam matches the prefix
first_beam = tokens[eos_mask].view(-1, beam_size, tokens.size(-1))[:, 0, 1:step + 1]
eos_mask_batch_dim = eos_mask.view(-1, beam_size)[:, 0]
target_prefix = prefix_tokens[eos_mask_batch_dim][:, :step]
assert (first_beam == target_prefix).all()
def replicate_first_beam(tensor, mask):
tensor = tensor.view(-1, beam_size, tensor.size(-1))
tensor[mask] = tensor[mask][:, :1, :]
return tensor.view(-1, tensor.size(-1))
# copy tokens, scores and lprobs from the first beam to all beams
tokens = replicate_first_beam(tokens, eos_mask_batch_dim)
scores = replicate_first_beam(scores, eos_mask_batch_dim)
fw_lprobs = replicate_first_beam(fw_lprobs, eos_mask_batch_dim)
ch_lm_lprobs = replicate_first_beam(ch_lm_lprobs, eos_mask_batch_dim)
lm_lprobs = replicate_first_beam(lm_lprobs, eos_mask_batch_dim)
if self.no_repeat_ngram_size > 0:
# for each beam and batch sentence, generate a list of previous ngrams
gen_ngrams = [{} for bbsz_idx in range(bsz * beam_size)]
for bbsz_idx in range(bsz * beam_size):
gen_tokens = tokens[bbsz_idx].tolist()
for ngram in zip(*[gen_tokens[i:] for i in range(self.no_repeat_ngram_size)]):
gen_ngrams[bbsz_idx][tuple(ngram[:-1])] = \
gen_ngrams[bbsz_idx].get(tuple(ngram[:-1]), []) + [ngram[-1]]
# Record attention scores
if avg_attn_scores is not None:
if attn is None:
attn = scores.new(bsz * beam_size, src_tokens.size(1), max_len + 2)
attn_buf = attn.clone()
nonpad_idxs = src_tokens.ne(self.pad)
attn[:, :, step + 1].copy_(avg_attn_scores)
scores = scores.type_as(fw_lprobs)
scores_buf = scores_buf.type_as(fw_lprobs)
self.search.set_src_lengths(src_lengths_no_eos)
if self.no_repeat_ngram_size > 0:
def calculate_banned_tokens(bbsz_idx):
# before decoding the next token, prevent decoding of ngrams that have already appeared
ngram_index = tuple(tokens[bbsz_idx, step + 2 - self.no_repeat_ngram_size:step + 1].tolist())
return gen_ngrams[bbsz_idx].get(ngram_index, [])
if step + 2 - self.no_repeat_ngram_size >= 0:
# no banned tokens if we haven't generated no_repeat_ngram_size tokens yet
banned_tokens = [calculate_banned_tokens(bbsz_idx) for bbsz_idx in range(bsz * beam_size)]
else:
banned_tokens = [[] for bbsz_idx in range(bsz * beam_size)]
for bbsz_idx in range(bsz * beam_size):
fw_lprobs[bbsz_idx, banned_tokens[bbsz_idx]] = -math.inf
combined_noisy_channel_scores, fw_lprobs_top_k, lm_lprobs_top_k, cand_indices, cand_beams = self.search.step(
step,
fw_lprobs.view(bsz, -1, self.vocab_size),
scores.view(bsz, beam_size, -1)[:, :, :step], ch_lm_lprobs.view(bsz, -1, self.vocab_size),
lm_lprobs.view(bsz, -1, self.vocab_size), self.combine_method
)
# cand_bbsz_idx contains beam indices for the top candidate
# hypotheses, with a range of values: [0, bsz*beam_size),
# and dimensions: [bsz, cand_size]
cand_bbsz_idx = cand_beams.add(bbsz_offsets)
# finalize hypotheses that end in eos (except for candidates to be ignored)
eos_mask = cand_indices.eq(self.eos)
eos_mask[:, :beam_size] &= ~cands_to_ignore
# only consider eos when it's among the top beam_size indices
eos_bbsz_idx = torch.masked_select(
cand_bbsz_idx[:, :beam_size], mask=eos_mask[:, :beam_size]
)
finalized_sents = set()
if eos_bbsz_idx.numel() > 0:
eos_scores = torch.masked_select(
fw_lprobs_top_k[:, :beam_size], mask=eos_mask[:, :beam_size]
)
combined_noisy_channel_eos_scores = torch.masked_select(
combined_noisy_channel_scores[:, :beam_size],
mask=eos_mask[:, :beam_size],
)
# finalize hypo using channel model score
finalized_sents = finalize_hypos(
step, eos_bbsz_idx, eos_scores, combined_noisy_channel_eos_scores)
num_remaining_sent -= len(finalized_sents)
assert num_remaining_sent >= 0
if num_remaining_sent == 0:
break
if len(finalized_sents) > 0:
new_bsz = bsz - len(finalized_sents)
# construct batch_idxs which holds indices of batches to keep for the next pass
batch_mask = cand_indices.new_ones(bsz)
batch_mask[cand_indices.new(finalized_sents)] = 0
batch_idxs = torch.nonzero(batch_mask).squeeze(-1)
eos_mask = eos_mask[batch_idxs]
cand_beams = cand_beams[batch_idxs]
bbsz_offsets.resize_(new_bsz, 1)
cand_bbsz_idx = cand_beams.add(bbsz_offsets)
lm_lprobs_top_k = lm_lprobs_top_k[batch_idxs]
fw_lprobs_top_k = fw_lprobs_top_k[batch_idxs]
cand_indices = cand_indices[batch_idxs]
if prefix_tokens is not None:
prefix_tokens = prefix_tokens[batch_idxs]
src_lengths_no_eos = src_lengths_no_eos[batch_idxs]
cands_to_ignore = cands_to_ignore[batch_idxs]
scores = scores.view(bsz, -1)[batch_idxs].view(new_bsz * beam_size, -1)
scores_buf.resize_as_(scores)
tokens = tokens.view(bsz, -1)[batch_idxs].view(new_bsz * beam_size, -1)
tokens_buf.resize_as_(tokens)
src_tokens = src_tokens.view(bsz, -1)[batch_idxs].view(new_bsz * beam_size, -1)
src_lengths = src_lengths.view(bsz, -1)[batch_idxs].view(new_bsz * beam_size, -1)
lm_prefix_scores = lm_prefix_scores.view(bsz, -1)[batch_idxs].view(new_bsz * beam_size, -1).squeeze()
if attn is not None:
attn = attn.view(bsz, -1)[batch_idxs].view(new_bsz * beam_size, attn.size(1), -1)
attn_buf.resize_as_(attn)
bsz = new_bsz
else:
batch_idxs = None
# Set active_mask so that values > cand_size indicate eos or
# ignored hypos and values < cand_size indicate candidate
# active hypos. After this, the min values per row are the top
# candidate active hypos.
eos_mask[:, :beam_size] |= cands_to_ignore
active_mask = torch.add(
eos_mask.type_as(cand_offsets) * cand_size,
cand_offsets[: eos_mask.size(1)],
)
# get the top beam_size active hypotheses, which are just the hypos
# with the smallest values in active_mask
active_hypos, new_cands_to_ignore = buffer('active_hypos'), buffer('new_cands_to_ignore')
torch.topk(
active_mask, k=beam_size, dim=1, largest=False,
out=(new_cands_to_ignore, active_hypos)
)
# update cands_to_ignore to ignore any finalized hypos
cands_to_ignore = new_cands_to_ignore.ge(cand_size)[:, :beam_size]
assert (~cands_to_ignore).any(dim=1).all()
active_bbsz_idx = buffer('active_bbsz_idx')
torch.gather(
cand_bbsz_idx, dim=1, index=active_hypos,
out=active_bbsz_idx,
)
active_scores = torch.gather(
fw_lprobs_top_k, dim=1, index=active_hypos,
out=scores[:, step].view(bsz, beam_size),
)
active_bbsz_idx = active_bbsz_idx.view(-1)
active_scores = active_scores.view(-1)
# copy tokens and scores for active hypotheses
torch.index_select(
tokens[:, :step + 1], dim=0, index=active_bbsz_idx,
out=tokens_buf[:, :step + 1],
)
torch.gather(
cand_indices, dim=1, index=active_hypos,
out=tokens_buf.view(bsz, beam_size, -1)[:, :, step + 1],
)
if step > 0:
torch.index_select(
scores[:, :step], dim=0, index=active_bbsz_idx,
out=scores_buf[:, :step],
)
torch.gather(
fw_lprobs_top_k, dim=1, index=active_hypos,
out=scores_buf.view(bsz, beam_size, -1)[:, :, step],
)
torch.gather(
lm_lprobs_top_k, dim=1, index=active_hypos,
out=lm_prefix_scores.view(bsz, beam_size)
)
# copy attention for active hypotheses
if attn is not None:
torch.index_select(
attn[:, :, :step + 2], dim=0, index=active_bbsz_idx,
out=attn_buf[:, :, :step + 2],
)
# swap buffers
tokens, tokens_buf = tokens_buf, tokens
scores, scores_buf = scores_buf, scores
if attn is not None:
attn, attn_buf = attn_buf, attn
# reorder incremental state in decoder
reorder_state = active_bbsz_idx
# sort by score descending
for sent in range(len(finalized)):
finalized[sent] = sorted(finalized[sent], key=lambda r: r['score'], reverse=True)
return finalized
def get_lm_scores(model, input_tokens, incremental_states, cand_tokens, input_len, k):
with torch.no_grad():
lm_lprobs, avg_attn_scores = model.forward_decoder(
input_tokens, encoder_outs=None, incremental_states=incremental_states,
)
lm_lprobs_size = lm_lprobs.size(0)
probs_next_wrd = torch.gather(lm_lprobs.repeat(1, k).view(lm_lprobs_size*k, -1), 1, cand_tokens).squeeze().view(-1)
return probs_next_wrd
def make_dict2dict(old_dict, new_dict):
dict2dict_map = {}
for sym in old_dict.symbols:
dict2dict_map[old_dict.index(sym)] = new_dict.index(sym)
return dict2dict_map
def dict2dict(tokens, dict2dict_map):
if tokens.device == torch.device('cpu'):
tokens_tmp = tokens
else:
tokens_tmp = tokens.cpu()
return tokens_tmp.map_(
tokens_tmp,
lambda _, val, dict2dict_map=dict2dict_map : dict2dict_map[float(val)]
).to(tokens.device)
def reorder_tokens(tokens, lengths, eos):
# reorder source tokens so they may be used as reference for P(S|T)
return torch.cat((tokens.new([eos]), tokens[-lengths:-1], tokens[:-lengths]), 0)
def reorder_all_tokens(tokens, lengths, eos):
# used to reorder src tokens from [<pad> <w1> <w2> .. <eos>] to [<eos> <w1> <w2>...<pad>]
# so source tokens can be used to predict P(S|T)
return torch.stack([reorder_tokens(token, length, eos) for token, length in zip(tokens, lengths)])
def normalized_scores_with_batch_vocab(
model_decoder, features, target_ids, k, bsz, beam_size,
pad_idx, top_k=0, vocab_size_meter=None, start_idx=None,
end_idx=None, **kwargs):
"""
Get normalized probabilities (or log probs) from a net's output
w.r.t. vocab consisting of target IDs in the batch
"""
if model_decoder.adaptive_softmax is None:
weight = model_decoder.output_projection.weight
vocab_ids = torch.unique(
torch.cat(
(torch.unique(target_ids), torch.arange(top_k, device=target_ids.device))
)
)
id_map = dict(zip(vocab_ids.tolist(), range(len(vocab_ids))))
mapped_target_ids = target_ids.cpu().apply_(
lambda x, id_map=id_map: id_map[x]
).to(target_ids.device)
expanded_target_ids = mapped_target_ids[:, :].repeat(1, k).view(bsz*beam_size*k, -1)
if start_idx is not None and end_idx is not None:
expanded_target_ids = expanded_target_ids[start_idx:end_idx, :]
logits = F.linear(features, weight[vocab_ids, :])
log_softmax = F.log_softmax(logits, dim=-1, dtype=torch.float32)
intermed_scores = torch.gather(
log_softmax[:, :-1, :],
2,
expanded_target_ids[:, 1:].unsqueeze(2),
).squeeze()
not_padding = expanded_target_ids[:, 1:] != pad_idx
intermed_scores *= not_padding.float()
return intermed_scores
else:
raise ValueError("adaptive softmax doesn't work with " +
"`normalized_scores_with_batch_vocab()`")