Spaces:
Runtime error
Runtime error
# Finetuning RoBERTa on a custom classification task | |
This example shows how to finetune RoBERTa on the IMDB dataset, but should illustrate the process for most classification tasks. | |
### 1) Get the data | |
```bash | |
wget http://ai.stanford.edu/~amaas/data/sentiment/aclImdb_v1.tar.gz | |
tar zxvf aclImdb_v1.tar.gz | |
``` | |
### 2) Format data | |
`IMDB` data has one data-sample in each file, below python code-snippet converts it one file for train and valid each for ease of processing. | |
```python | |
import argparse | |
import os | |
import random | |
from glob import glob | |
random.seed(0) | |
def main(args): | |
for split in ['train', 'test']: | |
samples = [] | |
for class_label in ['pos', 'neg']: | |
fnames = glob(os.path.join(args.datadir, split, class_label) + '/*.txt') | |
for fname in fnames: | |
with open(fname) as fin: | |
line = fin.readline() | |
samples.append((line, 1 if class_label == 'pos' else 0)) | |
random.shuffle(samples) | |
out_fname = 'train' if split == 'train' else 'dev' | |
f1 = open(os.path.join(args.datadir, out_fname + '.input0'), 'w') | |
f2 = open(os.path.join(args.datadir, out_fname + '.label'), 'w') | |
for sample in samples: | |
f1.write(sample[0] + '\n') | |
f2.write(str(sample[1]) + '\n') | |
f1.close() | |
f2.close() | |
if __name__ == '__main__': | |
parser = argparse.ArgumentParser() | |
parser.add_argument('--datadir', default='aclImdb') | |
args = parser.parse_args() | |
main(args) | |
``` | |
### 3) BPE encode | |
Run `multiprocessing_bpe_encoder`, you can also do this in previous step for each sample but that might be slower. | |
```bash | |
# Download encoder.json and vocab.bpe | |
wget -N 'https://dl.fbaipublicfiles.com/fairseq/gpt2_bpe/encoder.json' | |
wget -N 'https://dl.fbaipublicfiles.com/fairseq/gpt2_bpe/vocab.bpe' | |
for SPLIT in train dev; do | |
python -m examples.roberta.multiprocessing_bpe_encoder \ | |
--encoder-json encoder.json \ | |
--vocab-bpe vocab.bpe \ | |
--inputs "aclImdb/$SPLIT.input0" \ | |
--outputs "aclImdb/$SPLIT.input0.bpe" \ | |
--workers 60 \ | |
--keep-empty | |
done | |
``` | |
### 4) Preprocess data | |
```bash | |
# Download fairseq dictionary. | |
wget -N 'https://dl.fbaipublicfiles.com/fairseq/gpt2_bpe/dict.txt' | |
fairseq-preprocess \ | |
--only-source \ | |
--trainpref "aclImdb/train.input0.bpe" \ | |
--validpref "aclImdb/dev.input0.bpe" \ | |
--destdir "IMDB-bin/input0" \ | |
--workers 60 \ | |
--srcdict dict.txt | |
fairseq-preprocess \ | |
--only-source \ | |
--trainpref "aclImdb/train.label" \ | |
--validpref "aclImdb/dev.label" \ | |
--destdir "IMDB-bin/label" \ | |
--workers 60 | |
``` | |
### 5) Run training | |
```bash | |
TOTAL_NUM_UPDATES=7812 # 10 epochs through IMDB for bsz 32 | |
WARMUP_UPDATES=469 # 6 percent of the number of updates | |
LR=1e-05 # Peak LR for polynomial LR scheduler. | |
HEAD_NAME=imdb_head # Custom name for the classification head. | |
NUM_CLASSES=2 # Number of classes for the classification task. | |
MAX_SENTENCES=8 # Batch size. | |
ROBERTA_PATH=/path/to/roberta.large/model.pt | |
CUDA_VISIBLE_DEVICES=0 fairseq-train IMDB-bin/ \ | |
--restore-file $ROBERTA_PATH \ | |
--max-positions 512 \ | |
--batch-size $MAX_SENTENCES \ | |
--max-tokens 4400 \ | |
--task sentence_prediction \ | |
--reset-optimizer --reset-dataloader --reset-meters \ | |
--required-batch-size-multiple 1 \ | |
--init-token 0 --separator-token 2 \ | |
--arch roberta_large \ | |
--criterion sentence_prediction \ | |
--classification-head-name $HEAD_NAME \ | |
--num-classes $NUM_CLASSES \ | |
--dropout 0.1 --attention-dropout 0.1 \ | |
--weight-decay 0.1 --optimizer adam --adam-betas "(0.9, 0.98)" --adam-eps 1e-06 \ | |
--clip-norm 0.0 \ | |
--lr-scheduler polynomial_decay --lr $LR --total-num-update $TOTAL_NUM_UPDATES --warmup-updates $WARMUP_UPDATES \ | |
--fp16 --fp16-init-scale 4 --threshold-loss-scale 1 --fp16-scale-window 128 \ | |
--max-epoch 10 \ | |
--best-checkpoint-metric accuracy --maximize-best-checkpoint-metric \ | |
--shorten-method "truncate" \ | |
--find-unused-parameters \ | |
--update-freq 4 | |
``` | |
The above command will finetune RoBERTa-large with an effective batch-size of 32 | |
sentences (`--batch-size=8 --update-freq=4`). The expected | |
`best-validation-accuracy` after 10 epochs is ~96.5%. | |
If you run out of GPU memory, try decreasing `--batch-size` and increase | |
`--update-freq` to compensate. | |
### 6) Load model using hub interface | |
Now we can load the trained model checkpoint using the RoBERTa hub interface. | |
Assuming your checkpoints are stored in `checkpoints/`: | |
```python | |
from fairseq.models.roberta import RobertaModel | |
roberta = RobertaModel.from_pretrained( | |
'checkpoints', | |
checkpoint_file='checkpoint_best.pt', | |
data_name_or_path='IMDB-bin' | |
) | |
roberta.eval() # disable dropout | |
``` | |
Finally you can make predictions using the `imdb_head` (or whatever you set | |
`--classification-head-name` to during training): | |
```python | |
label_fn = lambda label: roberta.task.label_dictionary.string( | |
[label + roberta.task.label_dictionary.nspecial] | |
) | |
tokens = roberta.encode('Best movie this year') | |
pred = label_fn(roberta.predict('imdb_head', tokens).argmax().item()) | |
assert pred == '1' # positive | |
tokens = roberta.encode('Worst movie ever') | |
pred = label_fn(roberta.predict('imdb_head', tokens).argmax().item()) | |
assert pred == '0' # negative | |
``` | |