OFA-Image_Caption / fairseq /tests /test_token_block_dataset.py
JustinLin610
update
8437114
raw
history blame
3.63 kB
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import unittest
import tests.utils as test_utils
import torch
from fairseq.data import TokenBlockDataset
class TestTokenBlockDataset(unittest.TestCase):
def _build_dataset(self, data, **kwargs):
sizes = [len(x) for x in data]
underlying_ds = test_utils.TestDataset(data)
return TokenBlockDataset(underlying_ds, sizes, **kwargs)
def test_eos_break_mode(self):
data = [
torch.tensor([5, 4, 3, 2, 1], dtype=torch.long),
torch.tensor([1], dtype=torch.long),
torch.tensor([8, 7, 6, 1], dtype=torch.long),
]
ds = self._build_dataset(data, block_size=None, pad=0, eos=1, break_mode="eos")
self.assertEqual(ds[0].tolist(), [5, 4, 3, 2, 1])
self.assertEqual(ds[1].tolist(), [1])
self.assertEqual(ds[2].tolist(), [8, 7, 6, 1])
data = [
torch.tensor([5, 4, 3, 2, 1], dtype=torch.long),
torch.tensor([8, 7, 6, 1], dtype=torch.long),
torch.tensor([1], dtype=torch.long),
]
ds = self._build_dataset(data, block_size=None, pad=0, eos=1, break_mode="eos")
self.assertEqual(ds[0].tolist(), [5, 4, 3, 2, 1])
self.assertEqual(ds[1].tolist(), [8, 7, 6, 1])
self.assertEqual(ds[2].tolist(), [1])
def test_block_break_mode(self):
data = [
torch.tensor([5, 4, 3, 2, 1], dtype=torch.long),
torch.tensor([8, 7, 6, 1], dtype=torch.long),
torch.tensor([9, 1], dtype=torch.long),
]
ds = self._build_dataset(data, block_size=3, pad=0, eos=1, break_mode="none")
self.assertEqual(ds[0].tolist(), [5, 4, 3])
self.assertEqual(ds[1].tolist(), [2, 1, 8])
self.assertEqual(ds[2].tolist(), [7, 6, 1])
self.assertEqual(ds[3].tolist(), [9, 1])
def test_complete_break_mode(self):
data = [
torch.tensor([5, 4, 3, 2, 1], dtype=torch.long),
torch.tensor([8, 7, 6, 1], dtype=torch.long),
torch.tensor([9, 1], dtype=torch.long),
]
ds = self._build_dataset(
data, block_size=6, pad=0, eos=1, break_mode="complete"
)
self.assertEqual(ds[0].tolist(), [5, 4, 3, 2, 1])
self.assertEqual(ds[1].tolist(), [8, 7, 6, 1, 9, 1])
data = [
torch.tensor([4, 3, 2, 1], dtype=torch.long),
torch.tensor([5, 1], dtype=torch.long),
torch.tensor([1], dtype=torch.long),
torch.tensor([6, 1], dtype=torch.long),
]
ds = self._build_dataset(
data, block_size=3, pad=0, eos=1, break_mode="complete"
)
self.assertEqual(ds[0].tolist(), [4, 3, 2, 1])
self.assertEqual(ds[1].tolist(), [5, 1, 1])
self.assertEqual(ds[2].tolist(), [6, 1])
def test_4billion_tokens(self):
"""Regression test for numpy type promotion issue https://github.com/numpy/numpy/issues/5745"""
data = [torch.tensor(list(range(10000)), dtype=torch.long)] * 430000
ds = self._build_dataset(
data, block_size=6, pad=0, eos=1, break_mode="complete"
)
ds[-1] # __getitem__ works
start, end = ds.slice_indices[-1]
assert end > 4294967295 # data must be sufficiently large to overflow uint32
assert not isinstance(
end + 1, float
) # this would also raise, since np.uint64(1) + 1 => 2.0
if __name__ == "__main__":
unittest.main()