JustinLin610
update
8437114
raw
history blame
7.54 kB
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from fairseq import options
def get_reranking_parser(default_task="translation"):
parser = options.get_parser("Generation and reranking", default_task)
add_reranking_args(parser)
return parser
def get_tuning_parser(default_task="translation"):
parser = options.get_parser("Reranking tuning", default_task)
add_reranking_args(parser)
add_tuning_args(parser)
return parser
def add_reranking_args(parser):
group = parser.add_argument_group("Reranking")
# fmt: off
group.add_argument('--score-model1', '-s1', type=str, metavar='FILE', required=True,
help='path to first model or ensemble of models for rescoring')
group.add_argument('--score-model2', '-s2', type=str, metavar='FILE', required=False,
help='path to second model or ensemble of models for rescoring')
group.add_argument('--num-rescore', '-n', type=int, metavar='N', default=10,
help='the number of candidate hypothesis to rescore')
group.add_argument('-bz', '--batch-size', type=int, metavar='N', default=128,
help='batch size for generating the nbest list')
group.add_argument('--gen-subset', default='test', metavar='SET', choices=['test', 'train', 'valid'],
help='data subset to generate (train, valid, test)')
group.add_argument('--gen-model', default=None, metavar='FILE',
help='the model to generate translations')
group.add_argument('-b1', '--backwards1', action='store_true',
help='whether or not the first model group is backwards')
group.add_argument('-b2', '--backwards2', action='store_true',
help='whether or not the second model group is backwards')
group.add_argument('-a', '--weight1', default=1, nargs='+', type=float,
help='the weight(s) of the first model')
group.add_argument('-b', '--weight2', default=1, nargs='+', type=float,
help='the weight(s) of the second model, or the gen model if using nbest from interactive.py')
group.add_argument('-c', '--weight3', default=1, nargs='+', type=float,
help='the weight(s) of the third model')
# lm arguments
group.add_argument('-lm', '--language-model', default=None, metavar='FILE',
help='language model for target language to rescore translations')
group.add_argument('--lm-dict', default=None, metavar='FILE',
help='the dict of the language model for the target language')
group.add_argument('--lm-name', default=None,
help='the name of the language model for the target language')
group.add_argument('--lm-bpe-code', default=None, metavar='FILE',
help='the bpe code for the language model for the target language')
group.add_argument('--data-dir-name', default=None,
help='name of data directory')
group.add_argument('--lenpen', default=1, nargs='+', type=float,
help='length penalty: <1.0 favors shorter, >1.0 favors longer sentences')
group.add_argument('--score-dict-dir', default=None,
help='the directory with dictionaries for the scoring models')
group.add_argument('--right-to-left1', action='store_true',
help='whether the first model group is a right to left model')
group.add_argument('--right-to-left2', action='store_true',
help='whether the second model group is a right to left model')
group.add_argument('--post-process', '--remove-bpe', default='@@ ',
help='the bpe symbol, used for the bitext and LM')
group.add_argument('--prefix-len', default=None, type=int,
help='the length of the target prefix to use in rescoring (in terms of words wo bpe)')
group.add_argument('--sampling', action='store_true',
help='use sampling instead of beam search for generating n best list')
group.add_argument('--diff-bpe', action='store_true',
help='bpe for rescoring and nbest list not the same')
group.add_argument('--rescore-bpe-code', default=None,
help='bpe code for rescoring models')
group.add_argument('--nbest-list', default=None,
help='use predefined nbest list in interactive.py format')
group.add_argument('--write-hypos', default=None,
help='filename prefix to write hypos to')
group.add_argument('--ref-translation', default=None,
help='reference translation to use with nbest list from interactive.py')
group.add_argument('--backwards-score-dict-dir', default=None,
help='the directory with dictionaries for the backwards model,'
'if None then it is assumed the fw and backwards models share dictionaries')
# extra scaling args
group.add_argument('--gen-model-name', default=None,
help='the name of the models that generated the nbest list')
group.add_argument('--model1-name', default=None,
help='the name of the set for model1 group ')
group.add_argument('--model2-name', default=None,
help='the name of the set for model2 group')
group.add_argument('--shard-id', default=0, type=int,
help='the id of the shard to generate')
group.add_argument('--num-shards', default=1, type=int,
help='the number of shards to generate across')
group.add_argument('--all-shards', action='store_true',
help='use all shards')
group.add_argument('--target-prefix-frac', default=None, type=float,
help='the fraction of the target prefix to use in rescoring (in terms of words wo bpe)')
group.add_argument('--source-prefix-frac', default=None, type=float,
help='the fraction of the source prefix to use in rescoring (in terms of words wo bpe)')
group.add_argument('--normalize', action='store_true',
help='whether to normalize by src and target len')
# fmt: on
return group
def add_tuning_args(parser):
group = parser.add_argument_group("Tuning")
group.add_argument(
"--lower-bound",
default=[-0.7],
nargs="+",
type=float,
help="lower bound of search space",
)
group.add_argument(
"--upper-bound",
default=[3],
nargs="+",
type=float,
help="upper bound of search space",
)
group.add_argument(
"--tune-param",
default=["lenpen"],
nargs="+",
choices=["lenpen", "weight1", "weight2", "weight3"],
help="the parameter(s) to tune",
)
group.add_argument(
"--tune-subset",
default="valid",
choices=["valid", "test", "train"],
help="the subset to tune on ",
)
group.add_argument(
"--num-trials",
default=1000,
type=int,
help="number of trials to do for random search",
)
group.add_argument(
"--share-weights", action="store_true", help="share weight2 and weight 3"
)
return group