Spaces:
Runtime error
Runtime error
#!/usr/bin/env python3 -u | |
# Copyright (c) Facebook, Inc. and its affiliates. | |
# | |
# This source code is licensed under the MIT license found in the | |
# LICENSE file in the root directory of this source tree. | |
import argparse | |
import glob | |
from subprocess import check_call | |
try: | |
import faiss | |
has_faiss = True | |
except ImportError: | |
has_faiss = False | |
import numpy as np | |
GB = 1024 * 1024 * 1024 | |
def call(cmd): | |
print(cmd) | |
check_call(cmd, shell=True) | |
def get_batches(directory, lang, prefix="all_avg_pool"): | |
print(f"Finding in {directory}/{prefix}.{lang}*") | |
files = glob.glob(f"{directory}/{prefix}.{lang}*") | |
emb_files = [] | |
txt_files = [] | |
for emb_fi in files: | |
emb_files.append(emb_fi) | |
txt_fi = emb_fi.replace(prefix, "sentences") | |
txt_files.append(txt_fi) | |
return emb_files, txt_files | |
def load_batch(emb_file, dim): | |
embeddings = np.fromfile(emb_file, dtype=np.float32) | |
num_rows = int(embeddings.shape[0] / dim) | |
embeddings = embeddings.reshape((num_rows, dim)) | |
faiss.normalize_L2(embeddings) | |
return embeddings | |
def knnGPU_sharded(x_batches_f, y_batches_f, dim, k, direction="x2y"): | |
if not has_faiss: | |
raise ImportError("Please install Faiss") | |
sims = [] | |
inds = [] | |
xfrom = 0 | |
xto = 0 | |
for x_batch_f in x_batches_f: | |
yfrom = 0 | |
yto = 0 | |
x_batch = load_batch(x_batch_f, dim) | |
xto = xfrom + x_batch.shape[0] | |
bsims, binds = [], [] | |
for y_batch_f in y_batches_f: | |
y_batch = load_batch(y_batch_f, dim) | |
neighbor_size = min(k, y_batch.shape[0]) | |
yto = yfrom + y_batch.shape[0] | |
print("{}-{} -> {}-{}".format(xfrom, xto, yfrom, yto)) | |
idx = faiss.IndexFlatIP(dim) | |
idx = faiss.index_cpu_to_all_gpus(idx) | |
idx.add(y_batch) | |
bsim, bind = idx.search(x_batch, neighbor_size) | |
bsims.append(bsim) | |
binds.append(bind + yfrom) | |
yfrom += y_batch.shape[0] | |
del idx | |
del y_batch | |
bsims = np.concatenate(bsims, axis=1) | |
binds = np.concatenate(binds, axis=1) | |
aux = np.argsort(-bsims, axis=1) | |
sim_batch = np.zeros((x_batch.shape[0], k), dtype=np.float32) | |
ind_batch = np.zeros((x_batch.shape[0], k), dtype=np.int64) | |
for i in range(x_batch.shape[0]): | |
for j in range(k): | |
sim_batch[i, j] = bsims[i, aux[i, j]] | |
ind_batch[i, j] = binds[i, aux[i, j]] | |
sims.append(sim_batch) | |
inds.append(ind_batch) | |
xfrom += x_batch.shape[0] | |
del x_batch | |
sim = np.concatenate(sims, axis=0) | |
ind = np.concatenate(inds, axis=0) | |
return sim, ind | |
def score(sim, fwd_mean, bwd_mean, margin): | |
return margin(sim, (fwd_mean + bwd_mean) / 2) | |
def score_candidates( | |
sim_mat, candidate_inds, fwd_mean, bwd_mean, margin, verbose=False | |
): | |
print(" - scoring {:d} candidates".format(sim_mat.shape[0])) | |
scores = np.zeros(candidate_inds.shape) | |
for i in range(scores.shape[0]): | |
for j in range(scores.shape[1]): | |
k = int(candidate_inds[i, j]) | |
scores[i, j] = score(sim_mat[i, j], fwd_mean[i], bwd_mean[k], margin) | |
return scores | |
def load_text(files): | |
all_sentences = [] | |
for fi in files: | |
with open(fi) as sentence_fi: | |
for line in sentence_fi: | |
all_sentences.append(line.strip()) | |
print(f"Read {len(all_sentences)} sentences") | |
return all_sentences | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser(description="Mine bitext") | |
parser.add_argument("--src-lang", help="Source language") | |
parser.add_argument("--tgt-lang", help="Target language") | |
parser.add_argument( | |
"--dict-path", help="Path to dictionary file", default="dict.txt" | |
) | |
parser.add_argument( | |
"--spm-path", help="Path to SPM model file", default="sentence.bpe.model" | |
) | |
parser.add_argument("--dim", type=int, default=1024, help="Embedding dimension") | |
parser.add_argument("--mem", type=int, default=5, help="Memory in GB") | |
parser.add_argument("--src-dir", help="Source directory") | |
parser.add_argument("--tgt-dir", help="Target directory") | |
parser.add_argument("--output", help="Output path") | |
parser.add_argument( | |
"--neighborhood", type=int, default=4, help="Embedding dimension" | |
) | |
parser.add_argument( | |
"--threshold", type=float, default=1.06, help="Threshold on mined bitext" | |
) | |
parser.add_argument( | |
"--valid-size", | |
type=int, | |
default=2000, | |
help="Number of sentences used for validation set", | |
) | |
parser.add_argument( | |
"--min-count", | |
type=int, | |
default=50000, | |
help="Min num sentences used for each language", | |
) | |
args = parser.parse_args() | |
x_batches_f, x_sents_f = get_batches(args.src_dir, args.src_lang) | |
y_batches_f, y_sents_f = get_batches(args.tgt_dir, args.tgt_lang) | |
margin = lambda a, b: a / b | |
y2x_sim, y2x_ind = knnGPU_sharded( | |
y_batches_f, x_batches_f, args.dim, args.neighborhood, direction="y2x" | |
) | |
x2y_sim, x2y_ind = knnGPU_sharded( | |
x_batches_f, y_batches_f, args.dim, args.neighborhood, direction="x2y" | |
) | |
x2y_mean = x2y_sim.mean(axis=1) | |
y2x_mean = y2x_sim.mean(axis=1) | |
fwd_scores = score_candidates(x2y_sim, x2y_ind, x2y_mean, y2x_mean, margin) | |
bwd_scores = score_candidates(y2x_sim, y2x_ind, y2x_mean, x2y_mean, margin) | |
fwd_best = x2y_ind[np.arange(x2y_sim.shape[0]), fwd_scores.argmax(axis=1)] | |
bwd_best = y2x_ind[np.arange(y2x_sim.shape[0]), bwd_scores.argmax(axis=1)] | |
indices = np.stack( | |
( | |
np.concatenate((np.arange(x2y_ind.shape[0]), bwd_best)), | |
np.concatenate((fwd_best, np.arange(y2x_ind.shape[0]))), | |
), | |
axis=1, | |
) | |
scores = np.concatenate((fwd_scores.max(axis=1), bwd_scores.max(axis=1))) | |
x_sentences = load_text(x_sents_f) | |
y_sentences = load_text(y_sents_f) | |
threshold = args.threshold | |
min_count = args.min_count | |
seen_src, seen_trg = set(), set() | |
directory = args.output | |
call(f"mkdir -p {directory}") | |
src_out = open( | |
f"{directory}/all.{args.src_lang}", | |
mode="w", | |
encoding="utf-8", | |
errors="surrogateescape", | |
) | |
tgt_out = open( | |
f"{directory}/all.{args.tgt_lang}", | |
mode="w", | |
encoding="utf-8", | |
errors="surrogateescape", | |
) | |
scores_out = open( | |
f"{directory}/all.scores", mode="w", encoding="utf-8", errors="surrogateescape" | |
) | |
count = 0 | |
for i in np.argsort(-scores): | |
src_ind, trg_ind = indices[i] | |
if src_ind not in seen_src and trg_ind not in seen_trg: | |
seen_src.add(src_ind) | |
seen_trg.add(trg_ind) | |
if scores[i] > threshold or count < min_count: | |
if x_sentences[src_ind]: | |
print(scores[i], file=scores_out) | |
print(x_sentences[src_ind], file=src_out) | |
print(y_sentences[trg_ind], file=tgt_out) | |
count += 1 | |
else: | |
print(f"Ignoring sentence: {x_sentences[src_ind]}") | |
src_out.close() | |
tgt_out.close() | |
scores_out.close() | |
print(f"Found {count} pairs for threshold={threshold}") | |
with open(f"{directory}/all.{args.src_lang}") as all_s, open( | |
f"{directory}/all.{args.tgt_lang}" | |
) as all_t, open(f"{directory}/valid.{args.src_lang}", "w") as valid_s, open( | |
f"{directory}/valid.{args.tgt_lang}", "w" | |
) as valid_t, open( | |
f"{directory}/train.{args.src_lang}", "w" | |
) as train_s, open( | |
f"{directory}/train.{args.tgt_lang}", "w" | |
) as train_t: | |
count = 0 | |
for s_line, t_line in zip(all_s, all_t): | |
s_line = s_line.split("\t")[1] | |
t_line = t_line.split("\t")[1] | |
if count >= args.valid_size: | |
train_s.write(s_line) | |
train_t.write(t_line) | |
else: | |
valid_s.write(s_line) | |
valid_t.write(t_line) | |
count += 1 | |