JustinLin610
update
8437114
raw history blame
No virus
15.2 kB
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import types
import torch
def get_fused_adam_class():
"""
Look for the FusedAdam optimizer from apex. We first try to load the
"contrib" interface, which is a bit faster than the main interface,
but is technically deprecated.
"""
try:
# The "deprecated" interface in recent versions of apex is a bit
# faster than the main interface, since we don't use the apex
# optimizer. This can be installed by passing the
# `--deprecated_fused_adam` option when building apex.
global fused_adam_cuda
import importlib
fused_adam_cuda = importlib.import_module("fused_adam_cuda")
return FusedAdamV1
except ImportError:
try:
# fallback to the newer interface
from apex.optimizers import FusedAdam as _FusedAdam # noqa
from apex.multi_tensor_apply import multi_tensor_applier
if multi_tensor_applier.available:
return FusedAdamV2
except ImportError:
pass
return None
class FusedAdamV1(torch.optim.Optimizer):
"""
Implements Adam algorithm. Currently GPU-only. Requires Apex to be installed via
``python setup.py install --cuda_ext --cpp_ext``.
It has been proposed in `Adam: A Method for Stochastic Optimization`_.
Compared to the original version in Apex, the fairseq version casts grads
and params to FP32 internally to support ``--memory-efficient-fp16``.
Args:
params (iterable): iterable of parameters to optimize or dicts defining
parameter groups.
lr (float, optional): learning rate. (default: 1e-3)
betas (Tuple[float, float], optional): coefficients used for computing
running averages of gradient and its square. (default: (0.9, 0.999))
eps (float, optional): term added to the denominator to improve
numerical stability. (default: 1e-8)
weight_decay (float, optional): weight decay (L2 penalty) (default: 0)
amsgrad (boolean, optional): whether to use the AMSGrad variant of this
algorithm from the paper `On the Convergence of Adam and Beyond`_
(default: False) NOT SUPPORTED in FusedAdam!
eps_inside_sqrt (boolean, optional): in the 'update parameters' step,
adds eps to the bias-corrected second moment estimate before
evaluating square root instead of adding it to the square root of
second moment estimate as in the original paper. (default: False)
.. _Adam: A Method for Stochastic Optimization:
https://arxiv.org/abs/1412.6980
.. _On the Convergence of Adam and Beyond:
https://openreview.net/forum?id=ryQu7f-RZ
"""
def __init__(
self,
params,
lr=1e-3,
bias_correction=True,
betas=(0.9, 0.999),
eps=1e-8,
eps_inside_sqrt=False,
weight_decay=0.0,
max_grad_norm=0.0,
amsgrad=False,
use_fp16_stats=False,
):
global fused_adam_cuda
import importlib
fused_adam_cuda = importlib.import_module("fused_adam_cuda")
if amsgrad:
raise RuntimeError("FusedAdam does not support the AMSGrad variant.")
defaults = {
"lr": lr,
"bias_correction": bias_correction,
"betas": betas,
"eps": eps,
"weight_decay": weight_decay,
"max_grad_norm": max_grad_norm,
}
super().__init__(params, defaults)
self.eps_mode = 0 if eps_inside_sqrt else 1
self.use_fp16_stats = use_fp16_stats
self.FLOAT16_MAX = 65504.0
@property
def supports_memory_efficient_fp16(self):
return True
@property
def supports_flat_params(self):
return True
@property
def supports_step_with_scale(self):
return True
def step(self, closure=None, grads=None, scale=1.0, grad_norms=None):
"""Performs a single optimization step.
Args:
closure (callable, optional): A closure that reevaluates the model
and returns the loss.
grads (list of tensors, optional): weight gradient to use for the
optimizer update. If gradients have type torch.half, parameters
are expected to be in type torch.float. (default: None)
output params (list of tensors, optional): A reduced precision copy
of the updated weights written out in addition to the regular
updated weights. Have to be of same type as gradients. (default: None)
scale (float, optional): factor to divide gradient tensor values
by before applying to weights. (default: 1)
"""
loss = None
if closure is not None:
loss = closure()
if grads is None:
grads_group = [None] * len(self.param_groups)
# backward compatibility
# assuming a list/generator of parameter means single group
elif isinstance(grads, types.GeneratorType):
grads_group = [grads]
elif type(grads[0]) != list:
grads_group = [grads]
else:
grads_group = grads
if grad_norms is None:
grad_norms = [None] * len(self.param_groups)
for group, grads_this_group, grad_norm in zip(
self.param_groups, grads_group, grad_norms
):
if grads_this_group is None:
grads_this_group = [None] * len(group["params"])
# compute combined scale factor for this group
combined_scale = scale
if group.get("max_grad_norm", 0) > 0:
# norm is in fact norm*scale
clip = ((grad_norm / scale) + 1e-6) / group["max_grad_norm"]
if clip > 1:
combined_scale = clip * scale
bias_correction = 1 if group.get("bias_correction", 1) else 0
for p, grad in zip(group["params"], grads_this_group):
# note: p.grad should not ever be set for correct
# operation of mixed precision optimizer that sometimes
# sends None gradients
if p.grad is None and grad is None:
continue
if grad is None:
grad = p.grad.data
if grad.is_sparse:
raise RuntimeError(
"FusedAdam does not support sparse gradients, "
"please consider SparseAdam instead"
)
if p.device.type == "cpu":
p_data_fp32 = p.data.cuda(non_blocking=True).float()
out_p = torch.tensor([], dtype = torch.float)
else:
p_data_fp32 = p.data.float()
out_p = p.data
state = self.state[p]
# State initialization
dtype = torch.float16 if self.use_fp16_stats else p_data_fp32.dtype
if len(state) == 0:
state["step"] = 0
# Exponential moving average of gradient values
state["exp_avg"] = torch.zeros_like(p_data_fp32, dtype=dtype)
# Exponential moving average of squared gradient values
state["exp_avg_sq"] = torch.zeros_like(p_data_fp32, dtype=dtype)
if self.use_fp16_stats:
state["exp_avg_scale"] = 1.0
state["exp_avg_sq_scale"] = 1.0
else:
device = p_data_fp32.device
state["exp_avg"] = state["exp_avg"].to(device, dtype)
state["exp_avg_sq"] = state["exp_avg_sq"].to(device, dtype)
exp_avg = state["exp_avg"]
exp_avg_sq = state["exp_avg_sq"]
if self.use_fp16_stats:
assert exp_avg.dtype == torch.float16
exp_avg = exp_avg.float() * state["exp_avg_scale"]
exp_avg_sq = exp_avg_sq.float() * state["exp_avg_sq_scale"]
beta1, beta2 = group["betas"]
state["step"] += 1
with torch.cuda.device(p_data_fp32.device):
fused_adam_cuda.adam(
p_data_fp32,
out_p,
exp_avg,
exp_avg_sq,
grad,
group["lr"],
beta1,
beta2,
group["eps"],
combined_scale,
state["step"],
self.eps_mode,
bias_correction,
group["weight_decay"],
)
if p.device.type == "cpu":
p.data.copy_(p_data_fp32, non_blocking=True)
if self.use_fp16_stats:
def inf_norm(t):
return torch.norm(t, float("inf"))
# from github.com/openai/jukebox/blob/master/jukebox/utils/fp16.py
state["exp_avg_scale"], state["exp_avg_sq_scale"] = (
1e-8 + inf_norm(exp_avg) / self.FLOAT16_MAX,
1e-8 + inf_norm(exp_avg_sq) / self.FLOAT16_MAX,
)
state["exp_avg"], state["exp_avg_sq"] = (
(exp_avg / state["exp_avg_scale"]).half(),
(exp_avg_sq / state["exp_avg_sq_scale"]).half(),
)
return loss
try:
from apex.optimizers import FusedAdam
from apex.multi_tensor_apply import multi_tensor_applier
class FusedAdamV2(FusedAdam):
"""
Compared to the original version in Apex, the fairseq version casts grads
and params to FP32 internally to support ``--memory-efficient-fp16``.
"""
def __init__(self, *args, use_fp16_stats=False, **kwargs):
if use_fp16_stats:
raise NotImplementedError("--fp16-adam-stats is only supported with FusedAdamV1")
super().__init__(*args, **kwargs)
if not hasattr(self, "multi_tensor_adam"):
raise Exception(
"Apex installation is outdated. Please install an updated version of apex."
)
@property
def supports_memory_efficient_fp16(self):
return True
@property
def supports_flat_params(self):
return True
def step(
self,
closure=None,
grads=None,
output_params=None,
scale=None,
grad_norms=None,
):
"""Performs a single optimization step."""
loss = None
if closure is not None:
loss = closure()
for group in self.param_groups:
bias_correction = 1 if group["bias_correction"] else 0
beta1, beta2 = group["betas"]
# assume same step across group now to simplify things
# per parameter step can be easily support by making it tensor, or pass list into kernel
if "step" in group:
group["step"] += 1
else:
group["step"] = 1
# create lists for multi-tensor apply
g_16, p_16, orig_p_16, m_16, v_16 = [], [], [], [], []
g_32, p_32, m_32, v_32 = [], [], [], []
for p in group["params"]:
if p.grad is None:
continue
if p.grad.data.is_sparse:
raise RuntimeError(
"FusedAdam does not support sparse gradients, "
"please consider SparseAdam instead"
)
state = self.state[p]
# State initialization
if len(state) == 0:
# Exponential moving average of gradient values
state["exp_avg"] = torch.zeros_like(p.data, dtype=torch.float)
# Exponential moving average of squared gradient values
state["exp_avg_sq"] = torch.zeros_like(
p.data, dtype=torch.float
)
else:
state["exp_avg"] = state["exp_avg"].to(
device=p.data.device, dtype=torch.float
)
state["exp_avg_sq"] = state["exp_avg_sq"].to(
device=p.data.device, dtype=torch.float
)
if p.dtype == torch.float16:
g_16.append(p.grad.data.float())
p_16.append(p.data.float())
orig_p_16.append(p.data)
m_16.append(state["exp_avg"])
v_16.append(state["exp_avg_sq"])
elif p.dtype == torch.float32:
g_32.append(p.grad.data)
p_32.append(p.data)
m_32.append(state["exp_avg"])
v_32.append(state["exp_avg_sq"])
else:
raise RuntimeError("FusedAdam only support fp16 and fp32.")
with torch.cuda.device(p.device):
if len(g_16) > 0:
multi_tensor_applier(
self.multi_tensor_adam,
self._dummy_overflow_buf,
[g_16, p_16, m_16, v_16],
group["lr"],
beta1,
beta2,
group["eps"],
group["step"],
self.adam_w_mode,
bias_correction,
group["weight_decay"],
)
for orig_p, p in zip(orig_p_16, p_16):
orig_p.copy_(p.data)
if len(g_32) > 0:
multi_tensor_applier(
self.multi_tensor_adam,
self._dummy_overflow_buf,
[g_32, p_32, m_32, v_32],
group["lr"],
beta1,
beta2,
group["eps"],
group["step"],
self.adam_w_mode,
bias_correction,
group["weight_decay"],
)
return loss
except ImportError:
pass