JustinLin610
update
8437114
raw history blame
No virus
21.4 kB
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from collections import defaultdict
from itertools import chain
import torch
from fairseq import optim
from omegaconf import DictConfig
from .dynamic_loss_scaler import DynamicLossScaler
class _FP16OptimizerMixin(object):
def __init__(self, *args, **kwargs):
# forward __init__ call to the next class in mro(method resolution order)
super().__init__(*args, **kwargs)
self._multiply_factor = 1.0
@property
def has_flat_params(self):
return torch.is_tensor(self.fp32_params) or (
isinstance(self.fp32_params, dict)
and all(torch.is_tensor(t) for t in self.fp32_params.values())
)
@classmethod
def build_fp32_params(cls, args, params, flatten=True):
# create FP32 copy of parameters and grads
if flatten:
is_pipeline_parallel = getattr(
args, "pipeline_model_parallel", False
) and getattr(args, "distributed_no_spawn", False)
total_param_size = sum(p.data.numel() for p in params)
devices = [torch.cuda.current_device()]
if is_pipeline_parallel:
devices = list(set(args.pipeline_devices))
fp32_params = {}
for device in devices:
if is_pipeline_parallel:
device_param_size = sum(
p.data.numel() for p in params if p.device.index == device
)
device_params = [p for p in params if p.device.index == device]
else:
device_param_size = total_param_size
device_params = params
fp32_params[device] = (
device_params[0].new(0).float().new(device_param_size)
)
offset = 0
for p in device_params:
numel = p.data.numel()
fp32_params[device][offset : offset + numel].copy_(p.data.view(-1))
offset += numel
fp32_params[device] = torch.nn.Parameter(fp32_params[device])
fp32_params[device].grad = fp32_params[device].data.new(
device_param_size
)
return fp32_params
else:
fp32_params = []
for p in params:
p32 = torch.nn.Parameter(p.data.float())
if hasattr(p, 'expert'):
p32.expert = True
elif hasattr(p, 'base_expert'):
p32.base_expert = True
p32.grad = torch.zeros_like(p32.data)
if hasattr(p, "param_group"):
p32.param_group = p.param_group
fp32_params.append(p32)
return fp32_params
def state_dict(self):
"""Return the optimizer's state dict."""
state_dict = self.fp32_optimizer.state_dict()
if self.scaler is not None:
state_dict["loss_scale"] = self.scaler.loss_scale
return state_dict
def load_state_dict(self, state_dict, optimizer_overrides=None):
"""Load an optimizer state dict.
In general we should prefer the configuration of the existing optimizer
instance (e.g., learning rate) over that found in the state_dict. This
allows us to resume training from a checkpoint using a new set of
optimizer args.
"""
if "loss_scale" in state_dict and self.scaler is not None:
self.scaler.loss_scale = state_dict["loss_scale"]
self.fp32_optimizer.load_state_dict(state_dict, optimizer_overrides)
def backward(self, loss):
"""Computes the sum of gradients of the given tensor w.r.t. graph leaves.
Compared to :func:`fairseq.optim.FairseqOptimizer.backward`, this
function additionally dynamically scales the loss to avoid gradient
underflow.
"""
if self.scaler is not None:
loss = self.scaler.scale(loss)
loss.backward()
self._needs_sync = True
def _sync_fp16_grads_to_fp32(self):
if self._needs_sync:
# copy FP16 grads to FP32
if self.has_flat_params:
devices = list(self.fp32_params.keys())
device_params_dict = defaultdict(list)
for p in self.fp16_params:
if p.requires_grad:
device_params_dict[p.device.index].append(p)
for device in devices:
device_params = device_params_dict[device]
offset = 0
for p in device_params:
grad_data = (
p.grad.data
if p.grad is not None
else p.data.new_zeros(p.data.shape)
)
numel = grad_data.numel()
self.fp32_params[device].grad.data[
offset : offset + numel
].copy_(grad_data.view(-1))
offset += numel
else:
for p, p32 in zip(self.fp16_params, self.fp32_params):
if not p.requires_grad:
continue
if p.grad is not None:
if p32.grad is None:
p32.grad = p.grad.data.float()
else:
p32.grad.data.copy_(p.grad.data)
else:
p32.grad = torch.zeros_like(p.data, dtype=torch.float)
self._needs_sync = False
def _sync_fp32_params_to_fp16(self):
# copy FP32 params back into FP16 model
if self.has_flat_params:
devices = list(self.fp32_params.keys())
device_params_dict = defaultdict(list)
for p in self.fp16_params:
device_params_dict[p.device.index].append(p)
for device in devices:
device_params = device_params_dict[device]
offset = 0
for p in device_params:
numel = p.data.numel()
p.data.copy_(
self.fp32_params[device]
.data[offset : offset + numel]
.view_as(p.data)
)
offset += numel
else:
for p, p32 in zip(self.fp16_params, self.fp32_params):
if not p.requires_grad:
continue
p.data.copy_(p32.data)
def _unscale_grads(self):
self._sync_fp16_grads_to_fp32()
if (
# Skip the multiplication if it's a no-op (i.e., if _multiply_factor
# is 1.0). At the same time, we want to avoid the device-to-host
# transfer by comparing it to 1.0. Since _multiply_factor starts as
# a Python float, we roughly assume that if it's a tensor then it's
# probably not =1.0 anymore and we do the multiplication. Otherwise
# we can safely check the value without a D2H transfer.
torch.is_tensor(self._multiply_factor)
or self._multiply_factor != 1.0
):
self.fp32_optimizer.multiply_grads(self._multiply_factor)
self._multiply_factor = 1.0
def multiply_grads(self, c):
"""Multiplies grads by a constant ``c``."""
self._multiply_factor *= c
def clip_grad_norm(self, max_norm, aggregate_norm_fn=None):
"""Clips gradient norm and updates dynamic loss scaler."""
self._sync_fp16_grads_to_fp32()
grad_norm = self._multiply_factor * self.fp32_optimizer.clip_grad_norm(
0, aggregate_norm_fn
)
if self.scaler is not None:
if grad_norm > max_norm > 0.0:
self._multiply_factor *= max_norm / grad_norm
self.scaler.check_overflow(grad_norm)
elif max_norm > 0.0:
clip_coef = (max_norm / (grad_norm + 1e-6)).clamp_(max=1)
self._multiply_factor *= clip_coef
return grad_norm
def step(self, closure=None, groups=None):
"""Performs a single optimization step."""
self._sync_fp16_grads_to_fp32()
if getattr(self, "supports_step_with_scale", False):
self.fp32_optimizer.step(closure, scale=(1.0 / self._multiply_factor), groups=groups)
else:
self._unscale_grads()
self.fp32_optimizer.step(closure, groups=groups)
if self.scaler is not None:
self.scaler.update()
self._sync_fp32_params_to_fp16()
def zero_grad(self):
"""Clears the gradients of all optimized parameters."""
for p in self.fp16_params:
p.grad = None
if self.has_flat_params:
if torch.is_tensor(self.fp32_params):
self.fp32_params.grad.zero_()
elif isinstance(self.fp32_params, dict):
for fp32_params in self.fp32_params.values():
fp32_params.grad.zero_()
else:
raise RuntimeError("self.fp32_params must be a tensor or dict")
else:
for p32 in self.fp32_params:
if p32.grad is not None:
p32.grad.zero_()
self._needs_sync = False
if self.scaler is not None:
self._multiply_factor = 1.0 / float(self.scaler.loss_scale)
class FP16Optimizer(_FP16OptimizerMixin, optim.FairseqOptimizer):
"""
Wrap an *optimizer* to support FP16 (mixed precision) training.
"""
def __init__(self, cfg: DictConfig, params, fp32_optimizer, fp32_params, **kwargs):
super().__init__(cfg.optimizer)
self.fp16_params = params
self.fp32_optimizer = fp32_optimizer
self.fp32_params = fp32_params
if getattr(cfg.common, "fp16_scale_window", None) is None:
if len(cfg.optimization.update_freq) > 1:
raise ValueError(
"--fp16-scale-window must be given explicitly when using a "
"custom --update-freq schedule"
)
data_parallel_size = int(
cfg.distributed_training.distributed_world_size
/ cfg.common.model_parallel_size
)
scale_window = int(
2 ** 14 / data_parallel_size / cfg.optimization.update_freq[0]
)
else:
scale_window = cfg.common.fp16_scale_window
if not getattr(cfg.common, "bf16", False):
self.scaler = DynamicLossScaler(
init_scale=cfg.common.fp16_init_scale,
scale_window=scale_window,
tolerance=cfg.common.fp16_scale_tolerance,
threshold=cfg.common.threshold_loss_scale,
min_loss_scale=cfg.common.min_loss_scale,
)
else:
# disable loss scaling for bfloat16
self.scaler = None
@classmethod
def build_optimizer(cls, cfg: DictConfig, params, **kwargs):
"""
Args:
cfg (omegaconf.DictConfig): fairseq args
params (iterable): iterable of parameters to optimize
"""
flatten = not getattr(cfg.common, "fp16_no_flatten_grads", False)
if getattr(cfg.common, "bf16", False):
flatten = False # mixed precision is faster on TPUs without flat grads
fp32_params = cls.build_fp32_params(cfg.optimizer, params, flatten=flatten)
if flatten:
fp32_optimizer = optim.build_optimizer(cfg.optimizer, [fp32_params])
else:
fp32_optimizer = optim.build_optimizer(cfg.optimizer, fp32_params)
if flatten and not fp32_optimizer.supports_flat_params:
raise RuntimeError(
f"chosen optimizer {fp32_optimizer.__class__.__name__} does not support flat params, please set --fp16-no-flatten-grads"
)
return cls(cfg, params, fp32_optimizer, fp32_params, **kwargs)
@property
def optimizer(self):
return self.fp32_optimizer.optimizer
@optimizer.setter
def optimizer(self, optimizer):
self.fp32_optimizer.optimizer = optimizer
@property
def lr_scheduler(self):
return getattr(self.fp32_optimizer, "lr_scheduler", None)
@property
def optimizer_config(self):
return self.fp32_optimizer.optimizer_config
def get_lr(self):
return self.fp32_optimizer.get_lr()
def set_lr(self, lr):
self.fp32_optimizer.set_lr(lr)
def all_reduce_grads(self, module):
self.fp32_optimizer.all_reduce_grads(module)
@property
def supports_flat_params(self):
return self.fp32_optimizer.supports_flat_params
class _MemoryEfficientFP16OptimizerMixin(object):
def __init__(self, *args, **kwargs):
# forward __init__ call to the next class in MRO (method resolution order)
super().__init__(*args, **kwargs)
self._multiply_factor = 1.0
@property
def has_flat_params(self):
return False
def state_dict(self):
"""Return the optimizer's state dict."""
state_dict = self.wrapped_optimizer.state_dict()
if self.scaler is not None:
state_dict["loss_scale"] = self.scaler.loss_scale
return state_dict
def load_state_dict(self, state_dict, optimizer_overrides=None):
"""Load an optimizer state dict.
In general we should prefer the configuration of the existing optimizer
instance (e.g., learning rate) over that found in the state_dict. This
allows us to resume training from a checkpoint using a new set of
optimizer args.
"""
if "loss_scale" in state_dict and self.scaler is not None:
self.scaler.loss_scale = state_dict["loss_scale"]
self.wrapped_optimizer.load_state_dict(state_dict, optimizer_overrides)
# Hack: PyTorch automatically casts the optimizer state to match the
# type of the current parameters. But with --memory-efficient-fp16 the
# params are FP16 while the optimizer state is FP32 and we don't want
# to cast. A workaround is to manually copy back the original state
# after the optimizer has been loaded.
if not getattr(self.optimizer, "disable_mem_eff_fp16_loading_hack", False):
groups = self.optimizer.param_groups
saved_groups = state_dict["param_groups"]
id_map = {
old_id: p
for old_id, p in zip(
chain(*(g["params"] for g in saved_groups)),
chain(*(g["params"] for g in groups)),
)
}
for k, v in state_dict["state"].items():
if k in id_map:
param = id_map[k]
self.optimizer.state[param] = v
def backward(self, loss):
"""Computes the sum of gradients of the given tensor w.r.t. graph leaves.
Compared to :func:`fairseq.optim.FairseqOptimizer.backward`, this
function additionally dynamically scales the loss to avoid gradient
underflow.
"""
if self.scaler is not None:
loss = self.scaler.scale(loss)
loss.backward()
def _unscale_grads(self):
if (
# Skip the multiplication if it's a no-op (i.e., if _multiply_factor
# is 1.0). At the same time, we want to avoid the device-to-host
# transfer by comparing it to 1.0. Since _multiply_factor starts as
# a Python float, we roughly assume that if it's a tensor then it's
# probably not =1.0 anymore and we do the multiplication. Otherwise
# we can safely check the value without a D2H transfer.
torch.is_tensor(self._multiply_factor)
or self._multiply_factor != 1.0
):
self.wrapped_optimizer.multiply_grads(self._multiply_factor)
self._multiply_factor = 1.0
def multiply_grads(self, c):
"""Multiplies grads by a constant *c*."""
self._multiply_factor *= c
def clip_grad_norm(self, max_norm, aggregate_norm_fn=None):
"""Clips gradient norm and updates dynamic loss scaler."""
max_norm = float(max_norm)
grad_norm = self._multiply_factor * self.wrapped_optimizer.clip_grad_norm(
0, aggregate_norm_fn
)
if self.scaler is not None:
grad_norm_cpu = float(grad_norm)
if grad_norm_cpu > max_norm > 0.0:
self._multiply_factor *= max_norm / grad_norm_cpu
# detect overflow and adjust loss scale
self.scaler.check_overflow(grad_norm_cpu)
elif max_norm > 0.0:
clip_coef = (max_norm / (grad_norm + 1e-6)).clamp_(max=1)
self._multiply_factor *= clip_coef
return grad_norm
def step(self, closure=None, groups=None):
"""Performs a single optimization step."""
if getattr(self, "supports_step_with_scale", False):
# NOTE(msb) optimizer divides by scale factor
self.wrapped_optimizer.step(closure, scale=(1.0 / self._multiply_factor), groups=groups)
else:
self._unscale_grads()
self.wrapped_optimizer.step(closure, groups=groups)
if self.scaler is not None:
self.scaler.update()
def zero_grad(self):
"""Clears the gradients of all optimized parameters."""
self.wrapped_optimizer.zero_grad()
if self.scaler is not None:
self._multiply_factor = 1.0 / float(self.scaler.loss_scale)
else:
self._multiply_factor = 1.0
@property
def supports_flat_params(self):
return self.wrapped_optimizer.supports_flat_params
class MemoryEfficientFP16Optimizer(
_MemoryEfficientFP16OptimizerMixin, optim.FairseqOptimizer
):
"""
Wrap an *optimizer* to support FP16 (mixed precision) training.
Compared to :class:`fairseq.optim.FP16Optimizer`, this version does not
maintain an FP32 copy of the model. We instead expect the optimizer to
convert the gradients to FP32 internally and sync the results back to the
FP16 model params. This significantly reduces memory usage but slightly
increases the time spent in the optimizer.
Since this wrapper depends on specific functionality in the wrapped
optimizer (i.e., on-the-fly conversion of grads to FP32), only certain
optimizers can be wrapped. This is determined by the
*supports_memory_efficient_fp16* property.
"""
def __init__(
self, cfg: DictConfig, params, optimizer, allow_unsupported=False, **kwargs
):
if not allow_unsupported and not optimizer.supports_memory_efficient_fp16:
raise ValueError(
"Unsupported optimizer: {}".format(optimizer.__class__.__name__)
)
super().__init__(getattr(cfg, "optimizer", None))
self.wrapped_optimizer = optimizer
if getattr(cfg.common, "fp16_scale_window", None) is None:
if len(cfg.optimization.update_freq) > 1:
raise ValueError(
"--fp16-scale-window must be given explicitly when using a "
"custom --update-freq schedule"
)
data_parallel_size = int(
cfg.distributed_training.distributed_world_size
/ cfg.common.model_parallel_size
)
scale_window = int(
2 ** 14 / data_parallel_size / cfg.optimization.update_freq[0]
)
else:
scale_window = cfg.common.fp16_scale_window
if not getattr(cfg.common, "bf16", False):
self.scaler = DynamicLossScaler(
init_scale=cfg.common.fp16_init_scale,
scale_window=scale_window,
tolerance=cfg.common.fp16_scale_tolerance,
threshold=cfg.common.threshold_loss_scale,
min_loss_scale=cfg.common.min_loss_scale,
)
else:
# disable loss scaling for bfloat16
self.scaler = None
@classmethod
def build_optimizer(cls, cfg: DictConfig, params, **kwargs):
"""
Args:
args (argparse.Namespace): fairseq args
params (iterable): iterable of parameters to optimize
"""
fp16_optimizer = optim.build_optimizer(cfg.optimizer, params)
return cls(cfg, params, fp16_optimizer, **kwargs)
@property
def optimizer(self):
return self.wrapped_optimizer.optimizer
@optimizer.setter
def optimizer(self, optimizer):
self.wrapped_optimizer.optimizer = optimizer
@property
def optimizer_config(self):
return self.wrapped_optimizer.optimizer_config
@property
def lr_scheduler(self):
return getattr(self.wrapped_optimizer, "lr_scheduler", None)
def get_lr(self):
return self.wrapped_optimizer.get_lr()
def set_lr(self, lr):
self.wrapped_optimizer.set_lr(lr)
def all_reduce_grads(self, module):
self.wrapped_optimizer.all_reduce_grads(module)