Spaces:
Running
Running
from fastapi import FastAPI, HTTPException, Query | |
from fastapi.responses import JSONResponse | |
from webscout import WEBS, transcriber, LLM | |
from typing import Optional, List, Dict, Union | |
from fastapi.encoders import jsonable_encoder | |
from bs4 import BeautifulSoup | |
import requests | |
import urllib.parse | |
import asyncio | |
import aiohttp | |
import threading | |
app = FastAPI() | |
async def root(): | |
return {"message": "API documentation can be found at /docs"} | |
async def health_check(): | |
return {"status": "OK"} | |
async def search( | |
q: str, | |
max_results: int = 10, | |
timelimit: Optional[str] = None, | |
safesearch: str = "moderate", | |
region: str = "wt-wt", | |
backend: str = "api", | |
proxy: Optional[str] = None # Add proxy parameter here | |
): | |
"""Perform a text search.""" | |
try: | |
with WEBS(proxy=proxy) as webs: # Pass proxy to WEBS instance | |
results = webs.text( | |
keywords=q, | |
region=region, | |
safesearch=safesearch, | |
timelimit=timelimit, | |
backend=backend, | |
max_results=max_results, | |
) | |
return JSONResponse(content=jsonable_encoder(results)) | |
except Exception as e: | |
raise HTTPException(status_code=500, detail=f"Error during search: {e}") | |
async def images( | |
q: str, | |
max_results: int = 10, | |
safesearch: str = "moderate", | |
region: str = "wt-wt", | |
timelimit: Optional[str] = None, | |
size: Optional[str] = None, | |
color: Optional[str] = None, | |
type_image: Optional[str] = None, | |
layout: Optional[str] = None, | |
license_image: Optional[str] = None, | |
proxy: Optional[str] = None # Add proxy parameter here | |
): | |
"""Perform an image search.""" | |
try: | |
with WEBS(proxy=proxy) as webs: # Pass proxy to WEBS instance | |
results = webs.images( | |
keywords=q, | |
region=region, | |
safesearch=safesearch, | |
timelimit=timelimit, | |
size=size, | |
color=color, | |
type_image=type_image, | |
layout=layout, | |
license_image=license_image, | |
max_results=max_results, | |
) | |
return JSONResponse(content=jsonable_encoder(results)) | |
except Exception as e: | |
raise HTTPException(status_code=500, detail=f"Error during image search: {e}") | |
async def videos( | |
q: str, | |
max_results: int = 10, | |
safesearch: str = "moderate", | |
region: str = "wt-wt", | |
timelimit: Optional[str] = None, | |
resolution: Optional[str] = None, | |
duration: Optional[str] = None, | |
license_videos: Optional[str] = None, | |
proxy: Optional[str] = None # Add proxy parameter here | |
): | |
"""Perform a video search.""" | |
try: | |
with WEBS(proxy=proxy) as webs: # Pass proxy to WEBS instance | |
results = webs.videos( | |
keywords=q, | |
region=region, | |
safesearch=safesearch, | |
timelimit=timelimit, | |
resolution=resolution, | |
duration=duration, | |
license_videos=license_videos, | |
max_results=max_results, | |
) | |
return JSONResponse(content=jsonable_encoder(results)) | |
except Exception as e: | |
raise HTTPException(status_code=500, detail=f"Error during video search: {e}") | |
async def news( | |
q: str, | |
max_results: int = 10, | |
safesearch: str = "moderate", | |
region: str = "wt-wt", | |
timelimit: Optional[str] = None, | |
proxy: Optional[str] = None # Add proxy parameter here | |
): | |
"""Perform a news search.""" | |
try: | |
with WEBS(proxy=proxy) as webs: # Pass proxy to WEBS instance | |
results = webs.news( | |
keywords=q, | |
region=region, | |
safesearch=safesearch, | |
timelimit=timelimit, | |
max_results=max_results | |
) | |
return JSONResponse(content=jsonable_encoder(results)) | |
except Exception as e: | |
raise HTTPException(status_code=500, detail=f"Error during news search: {e}") | |
async def llm_chat( | |
model: str, | |
message: str, | |
system_prompt: str = Query(None, description="Optional custom system prompt") | |
): | |
"""Interact with a specified large language model with an optional system prompt.""" | |
try: | |
messages = [{"role": "user", "content": message}] | |
if system_prompt: | |
messages.insert(0, {"role": "system", "content": system_prompt}) # Add system message at the beginning | |
llm = LLM(model=model) | |
response = llm.chat(messages=messages) | |
return JSONResponse(content={"response": response}) | |
except Exception as e: | |
raise HTTPException(status_code=500, detail=f"Error during LLM chat: {e}") | |
async def answers(q: str, proxy: Optional[str] = None): | |
"""Get instant answers for a query.""" | |
try: | |
with WEBS(proxy=proxy) as webs: | |
results = webs.answers(keywords=q) | |
return JSONResponse(content=jsonable_encoder(results)) | |
except Exception as e: | |
raise HTTPException(status_code=500, detail=f"Error getting instant answers: {e}") | |
async def chat( | |
q: str, | |
model: str = "gpt-3.5", | |
proxy: Optional[str] = None | |
): | |
"""Perform a text search.""" | |
try: | |
with WEBS(proxy=proxy) as webs: | |
results = webs.chat(keywords=q, model=model) | |
return JSONResponse(content=jsonable_encoder(results)) | |
except Exception as e: | |
raise HTTPException(status_code=500, detail=f"Error getting chat results: {e}") | |
def extract_text_from_webpage(html_content): | |
"""Extracts visible text from HTML content using BeautifulSoup.""" | |
soup = BeautifulSoup(html_content, "html.parser") | |
# Remove unwanted tags | |
for tag in soup(["script", "style", "header", "footer", "nav"]): | |
tag.extract() | |
# Get the remaining visible text | |
visible_text = soup.get_text(strip=True) | |
return visible_text | |
async def fetch_and_extract(url, max_chars, proxy: Optional[str] = None): | |
"""Fetches a URL and extracts text asynchronously.""" | |
async with aiohttp.ClientSession() as session: | |
try: | |
async with session.get(url, headers={"User-Agent": "Mozilla/5.0"}, proxy=proxy) as response: | |
response.raise_for_status() | |
html_content = await response.text() | |
visible_text = extract_text_from_webpage(html_content) | |
if len(visible_text) > max_chars: | |
visible_text = visible_text[:max_chars] + "..." | |
return {"link": url, "text": visible_text} | |
except (aiohttp.ClientError, requests.exceptions.RequestException) as e: | |
print(f"Error fetching or processing {url}: {e}") | |
return {"link": url, "text": None} | |
async def web_extract( | |
url: str, | |
max_chars: int = 12000, # Adjust based on token limit | |
proxy: Optional[str] = None | |
): | |
"""Extracts text from a given URL.""" | |
try: | |
result = await fetch_and_extract(url, max_chars, proxy) | |
return {"url": url, "text": result["text"]} | |
except requests.exceptions.RequestException as e: | |
raise HTTPException(status_code=500, detail=f"Error fetching or processing URL: {e}") | |
async def web_search_and_extract( | |
q: str, | |
max_results: int = 3, | |
timelimit: Optional[str] = None, | |
safesearch: str = "moderate", | |
region: str = "wt-wt", | |
backend: str = "html", | |
max_chars: int = 6000, | |
extract_only: bool = True, | |
proxy: Optional[str] = None | |
): | |
""" | |
Searches using WEBS, extracts text from the top results, and returns both. | |
""" | |
try: | |
with WEBS(proxy=proxy) as webs: | |
# Perform WEBS search | |
search_results = webs.text(keywords=q, region=region, safesearch=safesearch, | |
timelimit=timelimit, backend=backend, max_results=max_results) | |
# Extract text from each result's link asynchronously | |
tasks = [fetch_and_extract(result['href'], max_chars, proxy) for result in search_results if 'href' in result] | |
extracted_results = await asyncio.gather(*tasks) | |
if extract_only: | |
return JSONResponse(content=jsonable_encoder(extracted_results)) | |
else: | |
return JSONResponse(content=jsonable_encoder({"search_results": search_results, "extracted_results": extracted_results})) | |
except Exception as e: | |
raise HTTPException(status_code=500, detail=f"Error during search and extraction: {e}") | |
def extract_text_from_webpage2(html_content): | |
"""Extracts visible text from HTML content using BeautifulSoup.""" | |
soup = BeautifulSoup(html_content, "html.parser") | |
# Remove unwanted tags | |
for tag in soup(["script", "style", "header", "footer", "nav"]): | |
tag.extract() | |
# Get the remaining visible text | |
visible_text = soup.get_text(strip=True) | |
return visible_text | |
def fetch_and_extract2(url, max_chars, proxy: Optional[str] = None): | |
"""Fetches a URL and extracts text using threading.""" | |
proxies = {'http': proxy, 'https': proxy} if proxy else None | |
try: | |
response = requests.get(url, headers={"User-Agent": "Mozilla/5.0"}, proxies=proxies) | |
response.raise_for_status() | |
html_content = response.text | |
visible_text = extract_text_from_webpage2(html_content) | |
if len(visible_text) > max_chars: | |
visible_text = visible_text[:max_chars] + "..." | |
return {"link": url, "text": visible_text} | |
except (requests.exceptions.RequestException) as e: | |
print(f"Error fetching or processing {url}: {e}") | |
return {"link": url, "text": None} | |
def web_search_and_extract_threading( | |
q: str, | |
max_results: int = 3, | |
timelimit: Optional[str] = None, | |
safesearch: str = "moderate", | |
region: str = "wt-wt", | |
backend: str = "html", | |
max_chars: int = 6000, | |
extract_only: bool = True, | |
proxy: Optional[str] = None | |
): | |
""" | |
Searches using WEBS, extracts text from the top results using threading, and returns both. | |
""" | |
try: | |
with WEBS(proxy=proxy) as webs: | |
# Perform WEBS search | |
search_results = webs.text(keywords=q, region=region, safesearch=safesearch, | |
timelimit=timelimit, backend=backend, max_results=max_results) | |
# Extract text from each result's link using threading | |
extracted_results = [] | |
threads = [] | |
for result in search_results: | |
if 'href' in result: | |
thread = threading.Thread(target=lambda: extracted_results.append(fetch_and_extract2(result['href'], max_chars, proxy))) | |
threads.append(thread) | |
thread.start() | |
# Wait for all threads to finish | |
for thread in threads: | |
thread.join() | |
if extract_only: | |
return JSONResponse(content=jsonable_encoder(extracted_results)) | |
else: | |
return JSONResponse(content=jsonable_encoder({"search_results": search_results, "extracted_results": extracted_results})) | |
except Exception as e: | |
raise HTTPException(status_code=500, detail=f"Error during search and extraction: {e}") | |
async def adv_web_search( | |
q: str, | |
model: str = "gpt-3.5", | |
max_results: int = 3, | |
timelimit: Optional[str] = None, | |
safesearch: str = "moderate", | |
region: str = "wt-wt", | |
backend: str = "html", | |
max_chars: int = 6000, | |
system_prompt: str = "You are Most Advanced and Powerful Ai chatbot, User ask you questions and you have to answer that, You are also provided with Google Search Results, To increase your accuracy and providing real time data. Your task is to answer in best way to user.", | |
proxy: Optional[str] = None | |
): | |
""" | |
Combines web search, web extraction, and LLM chat for advanced search. | |
""" | |
try: | |
with WEBS(proxy=proxy) as webs: | |
# 1. Perform the web search | |
search_results = webs.text(keywords=q, region=region, | |
safesearch=safesearch, | |
timelimit=timelimit, backend=backend, | |
max_results=max_results) | |
# 2. Extract text from top search result URLs asynchronously | |
extracted_text = "" | |
tasks = [fetch_and_extract(result['href'], max_chars, proxy) for result in search_results if 'href' in result] | |
extracted_results = await asyncio.gather(*tasks) | |
for result in extracted_results: | |
if result['text']: | |
extracted_text += f"## Content from: {result['link']}\n\n{result['text']}\n\n" | |
# 3. Construct the prompt for the LLM | |
llm_prompt = f"Query by user: {q} , Answer the query asked by user in detail. Now, You are provided with Google Search Results, To increase your accuracy and providing real time data. SEarch Result: {extracted_text}" | |
# 4. Get the LLM's response using LLM class (similar to /api/llm) | |
messages = [{"role": "user", "content": llm_prompt}] | |
if system_prompt: | |
messages.insert(0, {"role": "system", "content": system_prompt}) | |
llm = LLM(model=model) | |
llm_response = llm.chat(messages=messages) | |
# 5. Return the results | |
return JSONResponse(content=jsonable_encoder({ "llm_response": llm_response })) | |
except Exception as e: | |
raise HTTPException(status_code=500, detail=f"Error during advanced search: {e}") | |
async def website_summarizer(url: str, proxy: Optional[str] = None): | |
"""Summarizes the content of a given URL using a chat model.""" | |
try: | |
# Extract text from the given URL | |
proxies = {'http': proxy, 'https': proxy} if proxy else None | |
response = requests.get(url, headers={"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:109.0) Gecko/20100101 Firefox/111.0"}, proxies=proxies) | |
response.raise_for_status() | |
visible_text = extract_text_from_webpage(response.text) | |
if len(visible_text) > 7500: # Adjust max_chars based on your needs | |
visible_text = visible_text[:7500] + "..." | |
# Use chat model to summarize the extracted text | |
with WEBS(proxy=proxy) as webs: | |
summary_prompt = f"Summarize this in detail in Paragraph: {visible_text}" | |
summary_result = webs.chat(keywords=summary_prompt, model="gpt-3.5") | |
# Return the summary result | |
return JSONResponse(content=jsonable_encoder({summary_result})) | |
except requests.exceptions.RequestException as e: | |
raise HTTPException(status_code=500, detail=f"Error fetching or processing URL: {e}") | |
except Exception as e: | |
raise HTTPException(status_code=500, detail=f"Error during summarization: {e}") | |
async def ask_website(url: str, question: str, model: str = "llama-3-70b", proxy: Optional[str] = None): | |
""" | |
Asks a question about the content of a given website. | |
""" | |
try: | |
# Extract text from the given URL | |
proxies = {'http': proxy, 'https': proxy} if proxy else None | |
response = requests.get(url, headers={"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:109.0) Gecko/20100101 Firefox/111.0"}, proxies=proxies) | |
response.raise_for_status() | |
visible_text = extract_text_from_webpage(response.text) | |
if len(visible_text) > 7500: # Adjust max_chars based on your needs | |
visible_text = visible_text[:7500] + "..." | |
# Construct a prompt for the chat model | |
prompt = f"Based on the following text, answer this question in Paragraph: [QUESTION] {question} [TEXT] {visible_text}" | |
# Use chat model to get the answer | |
with WEBS(proxy=proxy) as webs: | |
answer_result = webs.chat(keywords=prompt, model=model) | |
# Return the answer result | |
return JSONResponse(content=jsonable_encoder({answer_result})) | |
except requests.exceptions.RequestException as e: | |
raise HTTPException(status_code=500, detail=f"Error fetching or processing URL: {e}") | |
except Exception as e: | |
raise HTTPException(status_code=500, detail=f"Error during question answering: {e}") | |
from huggingface_hub import InferenceClient | |
client_sd3 = InferenceClient("stabilityai/stable-diffusion-3-medium-diffusers") | |
from PIL import Image | |
def sd3(prompt :str = "", | |
steps: int = "20", | |
width: int = 1000, | |
height: int = 1000 | |
): | |
try: | |
image = client_sd3.text_to_image(prompt = f"{prompt}, hd, high quality, 4k, masterpiece", | |
num_inference_steps = steps, | |
width = width, height = height ) | |
image = Image.open(io.BytesIO(image)) | |
return image | |
except Exception as e: | |
raise HTTPException(status_code=500, detail=f"Error during image generation: {e}") | |
async def maps( | |
q: str, | |
place: Optional[str] = None, | |
street: Optional[str] = None, | |
city: Optional[str] = None, | |
county: Optional[str] = None, | |
state: Optional[str] = None, | |
country: Optional[str] = None, | |
postalcode: Optional[str] = None, | |
latitude: Optional[str] = None, | |
longitude: Optional[str] = None, | |
radius: int = 0, | |
max_results: int = 10, | |
proxy: Optional[str] = None | |
): | |
"""Perform a maps search.""" | |
try: | |
with WEBS(proxy=proxy) as webs: | |
results = webs.maps(keywords=q, place=place, street=street, city=city, county=county, state=state, country=country, postalcode=postalcode, latitude=latitude, longitude=longitude, radius=radius, max_results=max_results) | |
return JSONResponse(content=jsonable_encoder(results)) | |
except Exception as e: | |
raise HTTPException(status_code=500, detail=f"Error during maps search: {e}") | |
async def translate( | |
q: str, | |
from_: Optional[str] = None, | |
to: str = "en", | |
proxy: Optional[str] = None | |
): | |
"""Translate text.""" | |
try: | |
with WEBS(proxy=proxy) as webs: | |
results = webs.translate(keywords=q, from_=from_, to=to) | |
return JSONResponse(content=jsonable_encoder(results)) | |
except Exception as e: | |
raise HTTPException(status_code=500, detail=f"Error during translation: {e}") | |
from easygoogletranslate import EasyGoogleTranslate | |
def google_translate(q: str, from_: Optional[str] = 'auto', to: str = "en"): | |
try: | |
translator = EasyGoogleTranslate( | |
source_language=from_, | |
target_language=to, | |
timeout=10 | |
) | |
result = translator.translate(q) | |
return JSONResponse(content=jsonable_encoder({"detected_language": from_ , "original": q , "translated": result})) | |
except Exception as e: | |
raise HTTPException(status_code=500, detail=f"Error during translation: {e}") | |
async def youtube_transcript( | |
video_id: str, | |
languages: str = "en", | |
preserve_formatting: bool = False, | |
proxy: Optional[str] = None # Add proxy parameter | |
): | |
"""Get the transcript of a YouTube video.""" | |
try: | |
languages_list = languages.split(",") | |
transcript = transcriber.get_transcript(video_id, languages=languages_list, preserve_formatting=preserve_formatting, proxies=proxy) | |
return JSONResponse(content=jsonable_encoder(transcript)) | |
except Exception as e: | |
raise HTTPException(status_code=500, detail=f"Error getting YouTube transcript: {e}") | |
import requests | |
def get_weather_json(location: str): | |
url = f"https://wttr.in/{location}?format=j1" | |
response = requests.get(url) | |
if response.status_code == 200: | |
return response.json() | |
else: | |
return {"error": f"Unable to fetch weather data. Status code: {response.status_code}"} | |
def get_ascii_weather(location: str): | |
url = f"https://wttr.in/{location}" | |
response = requests.get(url, headers={'User-Agent': 'curl'}) | |
if response.status_code == 200: | |
return response.text | |
else: | |
return {"error": f"Unable to fetch weather data. Status code: {response.status_code}"} | |
# Run the API server if this script is executed | |
if __name__ == "__main__": | |
import uvicorn | |
uvicorn.run(app, host="0.0.0.0", port=8083) |