Spaces:
Paused
Paused
## 🐸Coqui.ai News | |
- 📣 ⓍTTS, our production TTS model that can speak 13 languages, is released [Blog Post](https://coqui.ai/blog/tts/open_xtts), [Demo](https://huggingface.co/spaces/coqui/xtts), [Docs](https://tts.readthedocs.io/en/dev/models/xtts.html) | |
- 📣 [🐶Bark](https://github.com/suno-ai/bark) is now available for inference with unconstrained voice cloning. [Docs](https://tts.readthedocs.io/en/dev/models/bark.html) | |
- 📣 You can use [~1100 Fairseq models](https://github.com/facebookresearch/fairseq/tree/main/examples/mms) with 🐸TTS. | |
- 📣 🐸TTS now supports 🐢Tortoise with faster inference. [Docs](https://tts.readthedocs.io/en/dev/models/tortoise.html) | |
- 📣 **Coqui Studio API** is landed on 🐸TTS. - [Example](https://github.com/coqui-ai/TTS/blob/dev/README.md#-python-api) | |
- 📣 [**Coqui Studio API**](https://docs.coqui.ai/docs) is live. | |
- 📣 Voice generation with prompts - **Prompt to Voice** - is live on [**Coqui Studio**](https://app.coqui.ai/auth/signin)!! - [Blog Post](https://coqui.ai/blog/tts/prompt-to-voice) | |
- 📣 Voice generation with fusion - **Voice fusion** - is live on [**Coqui Studio**](https://app.coqui.ai/auth/signin). | |
- 📣 Voice cloning is live on [**Coqui Studio**](https://app.coqui.ai/auth/signin). | |
<div align="center"> | |
<img src="https://static.scarf.sh/a.png?x-pxid=cf317fe7-2188-4721-bc01-124bb5d5dbb2" /> | |
## <img src="https://raw.githubusercontent.com/coqui-ai/TTS/main/images/coqui-log-green-TTS.png" height="56"/> | |
**🐸TTS is a library for advanced Text-to-Speech generation.** | |
🚀 Pretrained models in +1100 languages. | |
🛠️ Tools for training new models and fine-tuning existing models in any language. | |
📚 Utilities for dataset analysis and curation. | |
______________________________________________________________________ | |
[![Dicord](https://img.shields.io/discord/1037326658807533628?color=%239B59B6&label=chat%20on%20discord)](https://discord.gg/5eXr5seRrv) | |
[![License](<https://img.shields.io/badge/License-MPL%202.0-brightgreen.svg>)](https://opensource.org/licenses/MPL-2.0) | |
[![PyPI version](https://badge.fury.io/py/TTS.svg)](https://badge.fury.io/py/TTS) | |
[![Covenant](https://camo.githubusercontent.com/7d620efaa3eac1c5b060ece5d6aacfcc8b81a74a04d05cd0398689c01c4463bb/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f436f6e7472696275746f72253230436f76656e616e742d76322e3025323061646f707465642d6666363962342e737667)](https://github.com/coqui-ai/TTS/blob/master/CODE_OF_CONDUCT.md) | |
[![Downloads](https://pepy.tech/badge/tts)](https://pepy.tech/project/tts) | |
[![DOI](https://zenodo.org/badge/265612440.svg)](https://zenodo.org/badge/latestdoi/265612440) | |
![GithubActions](https://github.com/coqui-ai/TTS/actions/workflows/aux_tests.yml/badge.svg) | |
![GithubActions](https://github.com/coqui-ai/TTS/actions/workflows/data_tests.yml/badge.svg) | |
![GithubActions](https://github.com/coqui-ai/TTS/actions/workflows/docker.yaml/badge.svg) | |
![GithubActions](https://github.com/coqui-ai/TTS/actions/workflows/inference_tests.yml/badge.svg) | |
![GithubActions](https://github.com/coqui-ai/TTS/actions/workflows/style_check.yml/badge.svg) | |
![GithubActions](https://github.com/coqui-ai/TTS/actions/workflows/text_tests.yml/badge.svg) | |
![GithubActions](https://github.com/coqui-ai/TTS/actions/workflows/tts_tests.yml/badge.svg) | |
![GithubActions](https://github.com/coqui-ai/TTS/actions/workflows/vocoder_tests.yml/badge.svg) | |
![GithubActions](https://github.com/coqui-ai/TTS/actions/workflows/zoo_tests0.yml/badge.svg) | |
![GithubActions](https://github.com/coqui-ai/TTS/actions/workflows/zoo_tests1.yml/badge.svg) | |
![GithubActions](https://github.com/coqui-ai/TTS/actions/workflows/zoo_tests2.yml/badge.svg) | |
[![Docs](<https://readthedocs.org/projects/tts/badge/?version=latest&style=plastic>)](https://tts.readthedocs.io/en/latest/) | |
</div> | |
______________________________________________________________________ | |
## 💬 Where to ask questions | |
Please use our dedicated channels for questions and discussion. Help is much more valuable if it's shared publicly so that more people can benefit from it. | |
| Type | Platforms | | |
| ------------------------------- | --------------------------------------- | | |
| 🚨 **Bug Reports** | [GitHub Issue Tracker] | | |
| 🎁 **Feature Requests & Ideas** | [GitHub Issue Tracker] | | |
| 👩💻 **Usage Questions** | [GitHub Discussions] | | |
| 🗯 **General Discussion** | [GitHub Discussions] or [Discord] | | |
[github issue tracker]: https://github.com/coqui-ai/tts/issues | |
[github discussions]: https://github.com/coqui-ai/TTS/discussions | |
[discord]: https://discord.gg/5eXr5seRrv | |
[Tutorials and Examples]: https://github.com/coqui-ai/TTS/wiki/TTS-Notebooks-and-Tutorials | |
## 🔗 Links and Resources | |
| Type | Links | | |
| ------------------------------- | --------------------------------------- | | |
| 💼 **Documentation** | [ReadTheDocs](https://tts.readthedocs.io/en/latest/) | |
| 💾 **Installation** | [TTS/README.md](https://github.com/coqui-ai/TTS/tree/dev#install-tts)| | |
| 👩💻 **Contributing** | [CONTRIBUTING.md](https://github.com/coqui-ai/TTS/blob/main/CONTRIBUTING.md)| | |
| 📌 **Road Map** | [Main Development Plans](https://github.com/coqui-ai/TTS/issues/378) | |
| 🚀 **Released Models** | [TTS Releases](https://github.com/coqui-ai/TTS/releases) and [Experimental Models](https://github.com/coqui-ai/TTS/wiki/Experimental-Released-Models)| | |
| 📰 **Papers** | [TTS Papers](https://github.com/erogol/TTS-papers)| | |
## 🥇 TTS Performance | |
<p align="center"><img src="https://raw.githubusercontent.com/coqui-ai/TTS/main/images/TTS-performance.png" width="800" /></p> | |
Underlined "TTS*" and "Judy*" are **internal** 🐸TTS models that are not released open-source. They are here to show the potential. Models prefixed with a dot (.Jofish .Abe and .Janice) are real human voices. | |
## Features | |
- High-performance Deep Learning models for Text2Speech tasks. | |
- Text2Spec models (Tacotron, Tacotron2, Glow-TTS, SpeedySpeech). | |
- Speaker Encoder to compute speaker embeddings efficiently. | |
- Vocoder models (MelGAN, Multiband-MelGAN, GAN-TTS, ParallelWaveGAN, WaveGrad, WaveRNN) | |
- Fast and efficient model training. | |
- Detailed training logs on the terminal and Tensorboard. | |
- Support for Multi-speaker TTS. | |
- Efficient, flexible, lightweight but feature complete `Trainer API`. | |
- Released and ready-to-use models. | |
- Tools to curate Text2Speech datasets under```dataset_analysis```. | |
- Utilities to use and test your models. | |
- Modular (but not too much) code base enabling easy implementation of new ideas. | |
## Model Implementations | |
### Spectrogram models | |
- Tacotron: [paper](https://arxiv.org/abs/1703.10135) | |
- Tacotron2: [paper](https://arxiv.org/abs/1712.05884) | |
- Glow-TTS: [paper](https://arxiv.org/abs/2005.11129) | |
- Speedy-Speech: [paper](https://arxiv.org/abs/2008.03802) | |
- Align-TTS: [paper](https://arxiv.org/abs/2003.01950) | |
- FastPitch: [paper](https://arxiv.org/pdf/2006.06873.pdf) | |
- FastSpeech: [paper](https://arxiv.org/abs/1905.09263) | |
- FastSpeech2: [paper](https://arxiv.org/abs/2006.04558) | |
- SC-GlowTTS: [paper](https://arxiv.org/abs/2104.05557) | |
- Capacitron: [paper](https://arxiv.org/abs/1906.03402) | |
- OverFlow: [paper](https://arxiv.org/abs/2211.06892) | |
- Neural HMM TTS: [paper](https://arxiv.org/abs/2108.13320) | |
- Delightful TTS: [paper](https://arxiv.org/abs/2110.12612) | |
### End-to-End Models | |
- ⓍTTS: [blog](https://coqui.ai/blog/tts/open_xtts) | |
- VITS: [paper](https://arxiv.org/pdf/2106.06103) | |
- 🐸 YourTTS: [paper](https://arxiv.org/abs/2112.02418) | |
- 🐢 Tortoise: [orig. repo](https://github.com/neonbjb/tortoise-tts) | |
- 🐶 Bark: [orig. repo](https://github.com/suno-ai/bark) | |
### Attention Methods | |
- Guided Attention: [paper](https://arxiv.org/abs/1710.08969) | |
- Forward Backward Decoding: [paper](https://arxiv.org/abs/1907.09006) | |
- Graves Attention: [paper](https://arxiv.org/abs/1910.10288) | |
- Double Decoder Consistency: [blog](https://erogol.com/solving-attention-problems-of-tts-models-with-double-decoder-consistency/) | |
- Dynamic Convolutional Attention: [paper](https://arxiv.org/pdf/1910.10288.pdf) | |
- Alignment Network: [paper](https://arxiv.org/abs/2108.10447) | |
### Speaker Encoder | |
- GE2E: [paper](https://arxiv.org/abs/1710.10467) | |
- Angular Loss: [paper](https://arxiv.org/pdf/2003.11982.pdf) | |
### Vocoders | |
- MelGAN: [paper](https://arxiv.org/abs/1910.06711) | |
- MultiBandMelGAN: [paper](https://arxiv.org/abs/2005.05106) | |
- ParallelWaveGAN: [paper](https://arxiv.org/abs/1910.11480) | |
- GAN-TTS discriminators: [paper](https://arxiv.org/abs/1909.11646) | |
- WaveRNN: [origin](https://github.com/fatchord/WaveRNN/) | |
- WaveGrad: [paper](https://arxiv.org/abs/2009.00713) | |
- HiFiGAN: [paper](https://arxiv.org/abs/2010.05646) | |
- UnivNet: [paper](https://arxiv.org/abs/2106.07889) | |
### Voice Conversion | |
- FreeVC: [paper](https://arxiv.org/abs/2210.15418) | |
You can also help us implement more models. | |
## Installation | |
🐸TTS is tested on Ubuntu 18.04 with **python >= 3.7, < 3.11.**. | |
If you are only interested in [synthesizing speech](https://tts.readthedocs.io/en/latest/inference.html) with the released 🐸TTS models, installing from PyPI is the easiest option. | |
```bash | |
pip install TTS | |
``` | |
If you plan to code or train models, clone 🐸TTS and install it locally. | |
```bash | |
git clone https://github.com/coqui-ai/TTS | |
pip install -e .[all,dev,notebooks] # Select the relevant extras | |
``` | |
If you are on Ubuntu (Debian), you can also run following commands for installation. | |
```bash | |
$ make system-deps # intended to be used on Ubuntu (Debian). Let us know if you have a different OS. | |
$ make install | |
``` | |
If you are on Windows, 👑@GuyPaddock wrote installation instructions [here](https://stackoverflow.com/questions/66726331/how-can-i-run-mozilla-tts-coqui-tts-training-with-cuda-on-a-windows-system). | |
## Docker Image | |
You can also try TTS without install with the docker image. | |
Simply run the following command and you will be able to run TTS without installing it. | |
```bash | |
docker run --rm -it -p 5002:5002 --entrypoint /bin/bash ghcr.io/coqui-ai/tts-cpu | |
python3 TTS/server/server.py --list_models #To get the list of available models | |
python3 TTS/server/server.py --model_name tts_models/en/vctk/vits # To start a server | |
``` | |
You can then enjoy the TTS server [here](http://[::1]:5002/) | |
More details about the docker images (like GPU support) can be found [here](https://tts.readthedocs.io/en/latest/docker_images.html) | |
## Synthesizing speech by 🐸TTS | |
### 🐍 Python API | |
#### Running a multi-speaker and multi-lingual model | |
```python | |
import torch | |
from TTS.api import TTS | |
# Get device | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
# List available 🐸TTS models and choose the first one | |
model_name = TTS().list_models()[0] | |
# Init TTS | |
tts = TTS(model_name).to(device) | |
# Run TTS | |
# ❗ Since this model is multi-speaker and multi-lingual, we must set the target speaker and the language | |
# Text to speech with a numpy output | |
wav = tts.tts("This is a test! This is also a test!!", speaker=tts.speakers[0], language=tts.languages[0]) | |
# Text to speech to a file | |
tts.tts_to_file(text="Hello world!", speaker=tts.speakers[0], language=tts.languages[0], file_path="output.wav") | |
``` | |
#### Running a single speaker model | |
```python | |
# Init TTS with the target model name | |
tts = TTS(model_name="tts_models/de/thorsten/tacotron2-DDC", progress_bar=False).to(device) | |
# Run TTS | |
tts.tts_to_file(text="Ich bin eine Testnachricht.", file_path=OUTPUT_PATH) | |
# Example voice cloning with YourTTS in English, French and Portuguese | |
tts = TTS(model_name="tts_models/multilingual/multi-dataset/your_tts", progress_bar=False).to(device) | |
tts.tts_to_file("This is voice cloning.", speaker_wav="my/cloning/audio.wav", language="en", file_path="output.wav") | |
tts.tts_to_file("C'est le clonage de la voix.", speaker_wav="my/cloning/audio.wav", language="fr-fr", file_path="output.wav") | |
tts.tts_to_file("Isso é clonagem de voz.", speaker_wav="my/cloning/audio.wav", language="pt-br", file_path="output.wav") | |
``` | |
#### Example voice conversion | |
Converting the voice in `source_wav` to the voice of `target_wav` | |
```python | |
tts = TTS(model_name="voice_conversion_models/multilingual/vctk/freevc24", progress_bar=False).to("cuda") | |
tts.voice_conversion_to_file(source_wav="my/source.wav", target_wav="my/target.wav", file_path="output.wav") | |
``` | |
#### Example voice cloning together with the voice conversion model. | |
This way, you can clone voices by using any model in 🐸TTS. | |
```python | |
tts = TTS("tts_models/de/thorsten/tacotron2-DDC") | |
tts.tts_with_vc_to_file( | |
"Wie sage ich auf Italienisch, dass ich dich liebe?", | |
speaker_wav="target/speaker.wav", | |
file_path="output.wav" | |
) | |
``` | |
#### Example using [🐸Coqui Studio](https://coqui.ai) voices. | |
You access all of your cloned voices and built-in speakers in [🐸Coqui Studio](https://coqui.ai). | |
To do this, you'll need an API token, which you can obtain from the [account page](https://coqui.ai/account). | |
After obtaining the API token, you'll need to configure the COQUI_STUDIO_TOKEN environment variable. | |
Once you have a valid API token in place, the studio speakers will be displayed as distinct models within the list. | |
These models will follow the naming convention `coqui_studio/en/<studio_speaker_name>/coqui_studio` | |
```python | |
# XTTS model | |
models = TTS(cs_api_model="XTTS").list_models() | |
# Init TTS with the target studio speaker | |
tts = TTS(model_name="coqui_studio/en/Torcull Diarmuid/coqui_studio", progress_bar=False) | |
# Run TTS | |
tts.tts_to_file(text="This is a test.", file_path=OUTPUT_PATH) | |
# V1 model | |
models = TTS(cs_api_model="V1").list_models() | |
# Run TTS with emotion and speed control | |
# Emotion control only works with V1 model | |
tts.tts_to_file(text="This is a test.", file_path=OUTPUT_PATH, emotion="Happy", speed=1.5) | |
# XTTS-multilingual | |
models = TTS(cs_api_model="XTTS-multilingual").list_models() | |
# Run TTS with emotion and speed control | |
# Emotion control only works with V1 model | |
tts.tts_to_file(text="Das ist ein Test.", file_path=OUTPUT_PATH, language="de", speed=1.0) | |
``` | |
#### Example text to speech using **Fairseq models in ~1100 languages** 🤯. | |
For Fairseq models, use the following name format: `tts_models/<lang-iso_code>/fairseq/vits`. | |
You can find the language ISO codes [here](https://dl.fbaipublicfiles.com/mms/tts/all-tts-languages.html) | |
and learn about the Fairseq models [here](https://github.com/facebookresearch/fairseq/tree/main/examples/mms). | |
```python | |
# TTS with on the fly voice conversion | |
api = TTS("tts_models/deu/fairseq/vits") | |
api.tts_with_vc_to_file( | |
"Wie sage ich auf Italienisch, dass ich dich liebe?", | |
speaker_wav="target/speaker.wav", | |
file_path="output.wav" | |
) | |
``` | |
### Command-line `tts` | |
<!-- begin-tts-readme --> | |
Synthesize speech on command line. | |
You can either use your trained model or choose a model from the provided list. | |
If you don't specify any models, then it uses LJSpeech based English model. | |
#### Single Speaker Models | |
- List provided models: | |
``` | |
$ tts --list_models | |
``` | |
- Get model info (for both tts_models and vocoder_models): | |
- Query by type/name: | |
The model_info_by_name uses the name as it from the --list_models. | |
``` | |
$ tts --model_info_by_name "<model_type>/<language>/<dataset>/<model_name>" | |
``` | |
For example: | |
``` | |
$ tts --model_info_by_name tts_models/tr/common-voice/glow-tts | |
$ tts --model_info_by_name vocoder_models/en/ljspeech/hifigan_v2 | |
``` | |
- Query by type/idx: | |
The model_query_idx uses the corresponding idx from --list_models. | |
``` | |
$ tts --model_info_by_idx "<model_type>/<model_query_idx>" | |
``` | |
For example: | |
``` | |
$ tts --model_info_by_idx tts_models/3 | |
``` | |
- Query info for model info by full name: | |
``` | |
$ tts --model_info_by_name "<model_type>/<language>/<dataset>/<model_name>" | |
``` | |
- Run TTS with default models: | |
``` | |
$ tts --text "Text for TTS" --out_path output/path/speech.wav | |
``` | |
- Run a TTS model with its default vocoder model: | |
``` | |
$ tts --text "Text for TTS" --model_name "<model_type>/<language>/<dataset>/<model_name>" --out_path output/path/speech.wav | |
``` | |
For example: | |
``` | |
$ tts --text "Text for TTS" --model_name "tts_models/en/ljspeech/glow-tts" --out_path output/path/speech.wav | |
``` | |
- Run with specific TTS and vocoder models from the list: | |
``` | |
$ tts --text "Text for TTS" --model_name "<model_type>/<language>/<dataset>/<model_name>" --vocoder_name "<model_type>/<language>/<dataset>/<model_name>" --out_path output/path/speech.wav | |
``` | |
For example: | |
``` | |
$ tts --text "Text for TTS" --model_name "tts_models/en/ljspeech/glow-tts" --vocoder_name "vocoder_models/en/ljspeech/univnet" --out_path output/path/speech.wav | |
``` | |
- Run your own TTS model (Using Griffin-Lim Vocoder): | |
``` | |
$ tts --text "Text for TTS" --model_path path/to/model.pth --config_path path/to/config.json --out_path output/path/speech.wav | |
``` | |
- Run your own TTS and Vocoder models: | |
``` | |
$ tts --text "Text for TTS" --model_path path/to/model.pth --config_path path/to/config.json --out_path output/path/speech.wav | |
--vocoder_path path/to/vocoder.pth --vocoder_config_path path/to/vocoder_config.json | |
``` | |
#### Multi-speaker Models | |
- List the available speakers and choose a <speaker_id> among them: | |
``` | |
$ tts --model_name "<language>/<dataset>/<model_name>" --list_speaker_idxs | |
``` | |
- Run the multi-speaker TTS model with the target speaker ID: | |
``` | |
$ tts --text "Text for TTS." --out_path output/path/speech.wav --model_name "<language>/<dataset>/<model_name>" --speaker_idx <speaker_id> | |
``` | |
- Run your own multi-speaker TTS model: | |
``` | |
$ tts --text "Text for TTS" --out_path output/path/speech.wav --model_path path/to/model.pth --config_path path/to/config.json --speakers_file_path path/to/speaker.json --speaker_idx <speaker_id> | |
``` | |
### Voice Conversion Models | |
``` | |
$ tts --out_path output/path/speech.wav --model_name "<language>/<dataset>/<model_name>" --source_wav <path/to/speaker/wav> --target_wav <path/to/reference/wav> | |
``` | |
<!-- end-tts-readme --> | |
## Directory Structure | |
``` | |
|- notebooks/ (Jupyter Notebooks for model evaluation, parameter selection and data analysis.) | |
|- utils/ (common utilities.) | |
|- TTS | |
|- bin/ (folder for all the executables.) | |
|- train*.py (train your target model.) | |
|- ... | |
|- tts/ (text to speech models) | |
|- layers/ (model layer definitions) | |
|- models/ (model definitions) | |
|- utils/ (model specific utilities.) | |
|- speaker_encoder/ (Speaker Encoder models.) | |
|- (same) | |
|- vocoder/ (Vocoder models.) | |
|- (same) | |
``` | |