undress / run.py
crytion's picture
Upload 5 files
3a5fce1
raw
history blame
4.46 kB
import cv2
#Import Neural Network Model
from gan import DataLoader, DeepModel, tensor2im
#OpenCv Transform:
from opencv_transform.mask_to_maskref import create_maskref
from opencv_transform.maskdet_to_maskfin import create_maskfin
from opencv_transform.dress_to_correct import create_correct
from opencv_transform.nude_to_watermark import create_watermark
"""
run.py
This script manage the entire transormation.
Transformation happens in 6 phases:
0: dress -> correct [opencv] dress_to_correct
1: correct -> mask: [GAN] correct_to_mask
2: mask -> maskref [opencv] mask_to_maskref
3: maskref -> maskdet [GAN] maskref_to_maskdet
4: maskdet -> maskfin [opencv] maskdet_to_maskfin
5: maskfin -> nude [GAN] maskfin_to_nude
6: nude -> watermark [opencv] nude_to_watermark
"""
phases = ["dress_to_correct", "correct_to_mask", "mask_to_maskref", "maskref_to_maskdet", "maskdet_to_maskfin", "maskfin_to_nude", "nude_to_watermark"]
class Options():
#Init options with default values
def __init__(self):
# experiment specifics
self.norm = 'batch' #instance normalization or batch normalization
self.use_dropout = False #use dropout for the generator
self.data_type = 32 #Supported data type i.e. 8, 16, 32 bit
# input/output sizes
self.batchSize = 1 #input batch size
self.input_nc = 3 # of input image channels
self.output_nc = 3 # of output image channels
# for setting inputs
self.serial_batches = True #if true, takes images in order to make batches, otherwise takes them randomly
self.nThreads = 1 ## threads for loading data (???)
self.max_dataset_size = 1 #Maximum number of samples allowed per dataset. If the dataset directory contains more than max_dataset_size, only a subset is loaded.
# for generator
self.netG = 'global' #selects model to use for netG
self.ngf = 64 ## of gen filters in first conv layer
self.n_downsample_global = 4 #number of downsampling layers in netG
self.n_blocks_global = 9 #number of residual blocks in the global generator network
self.n_blocks_local = 0 #number of residual blocks in the local enhancer network
self.n_local_enhancers = 0 #number of local enhancers to use
self.niter_fix_global = 0 #number of epochs that we only train the outmost local enhancer
#Phase specific options
self.checkpoints_dir = ""
self.dataroot = ""
#Changes options accordlying to actual phase
def updateOptions(self, phase):
if phase == "correct_to_mask":
self.checkpoints_dir = "checkpoints/cm.lib"
elif phase == "maskref_to_maskdet":
self.checkpoints_dir = "checkpoints/mm.lib"
elif phase == "maskfin_to_nude":
self.checkpoints_dir = "checkpoints/mn.lib"
# process(cv_img, mode)
# return:
# watermark image
def process(cv_img):
#InMemory cv2 images:
dress = cv_img
correct = None
mask = None
maskref = None
maskfin = None
maskdet = None
nude = None
watermark = None
for index, phase in enumerate(phases):
print("Executing phase: " + phase)
#GAN phases:
if (phase == "correct_to_mask") or (phase == "maskref_to_maskdet") or (phase == "maskfin_to_nude"):
#Load global option
opt = Options()
#Load custom phase options:
opt.updateOptions(phase)
#Load Data
if (phase == "correct_to_mask"):
data_loader = DataLoader(opt, correct)
elif (phase == "maskref_to_maskdet"):
data_loader = DataLoader(opt, maskref)
elif (phase == "maskfin_to_nude"):
data_loader = DataLoader(opt, maskfin)
dataset = data_loader.load_data()
#Create Model
model = DeepModel()
model.initialize(opt)
#Run for every image:
for i, data in enumerate(dataset):
generated = model.inference(data['label'], data['inst'])
im = tensor2im(generated.data[0])
#Save Data
if (phase == "correct_to_mask"):
mask = cv2.cvtColor(im, cv2.COLOR_RGB2BGR)
elif (phase == "maskref_to_maskdet"):
maskdet = cv2.cvtColor(im, cv2.COLOR_RGB2BGR)
elif (phase == "maskfin_to_nude"):
nude = cv2.cvtColor(im, cv2.COLOR_RGB2BGR)
#Correcting:
elif (phase == 'dress_to_correct'):
correct = create_correct(dress)
#mask_ref phase (opencv)
elif (phase == "mask_to_maskref"):
maskref = create_maskref(mask, correct)
#mask_fin phase (opencv)
elif (phase == "maskdet_to_maskfin"):
maskfin = create_maskfin(maskref, maskdet)
#nude_to_watermark phase (opencv)
elif (phase == "nude_to_watermark"):
watermark = create_watermark(nude)
return watermark