crytion commited on
Commit
3a5fce1
·
1 Parent(s): 897e9d3

Upload 5 files

Browse files
Files changed (5) hide show
  1. gan.py +240 -0
  2. gggg.py +78 -0
  3. input.png +0 -0
  4. main.py +49 -0
  5. run.py +150 -0
gan.py ADDED
@@ -0,0 +1,240 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from PIL import Image
2
+ import numpy as np
3
+ import cv2
4
+ import torchvision.transforms as transforms
5
+ import torch
6
+ import io
7
+ import os
8
+ import functools
9
+
10
+ class DataLoader():
11
+
12
+ def __init__(self, opt, cv_img):
13
+ super(DataLoader, self).__init__()
14
+
15
+ self.dataset = Dataset()
16
+ self.dataset.initialize(opt, cv_img)
17
+
18
+ self.dataloader = torch.utils.data.DataLoader(
19
+ self.dataset,
20
+ batch_size=opt.batchSize,
21
+ shuffle=not opt.serial_batches,
22
+ num_workers=int(opt.nThreads))
23
+
24
+ def load_data(self):
25
+ return self.dataloader
26
+
27
+ def __len__(self):
28
+ return 1
29
+
30
+ class Dataset(torch.utils.data.Dataset):
31
+ def __init__(self):
32
+ super(Dataset, self).__init__()
33
+
34
+ def initialize(self, opt, cv_img):
35
+ self.opt = opt
36
+ self.root = opt.dataroot
37
+
38
+ self.A = Image.fromarray(cv2.cvtColor(cv_img, cv2.COLOR_BGR2RGB))
39
+ self.dataset_size = 1
40
+
41
+ def __getitem__(self, index):
42
+
43
+ transform_A = get_transform(self.opt)
44
+ A_tensor = transform_A(self.A.convert('RGB'))
45
+
46
+ B_tensor = inst_tensor = feat_tensor = 0
47
+
48
+ input_dict = {'label': A_tensor, 'inst': inst_tensor, 'image': B_tensor,
49
+ 'feat': feat_tensor, 'path': ""}
50
+
51
+ return input_dict
52
+
53
+ def __len__(self):
54
+ return 1
55
+
56
+ class DeepModel(torch.nn.Module):
57
+
58
+ def initialize(self, opt):
59
+
60
+ torch.cuda.empty_cache()
61
+
62
+ self.opt = opt
63
+
64
+ self.gpu_ids = [] #FIX CPU
65
+
66
+ self.netG = self.__define_G(opt.input_nc, opt.output_nc, opt.ngf, opt.netG,
67
+ opt.n_downsample_global, opt.n_blocks_global, opt.n_local_enhancers,
68
+ opt.n_blocks_local, opt.norm, self.gpu_ids)
69
+
70
+ # load networks
71
+ self.__load_network(self.netG)
72
+
73
+
74
+
75
+ def inference(self, label, inst):
76
+
77
+ # Encode Inputs
78
+ input_label, inst_map, _, _ = self.__encode_input(label, inst, infer=True)
79
+
80
+ # Fake Generation
81
+ input_concat = input_label
82
+
83
+ with torch.no_grad():
84
+ fake_image = self.netG.forward(input_concat)
85
+
86
+ return fake_image
87
+
88
+ # helper loading function that can be used by subclasses
89
+ def __load_network(self, network):
90
+
91
+ save_path = os.path.join(self.opt.checkpoints_dir)
92
+
93
+ network.load_state_dict(torch.load(save_path))
94
+
95
+ def __encode_input(self, label_map, inst_map=None, real_image=None, feat_map=None, infer=False):
96
+ if (len(self.gpu_ids) > 0):
97
+ input_label = label_map.data.cuda() #GPU
98
+ else:
99
+ input_label = label_map.data #CPU
100
+
101
+ return input_label, inst_map, real_image, feat_map
102
+
103
+ def __weights_init(self, m):
104
+ classname = m.__class__.__name__
105
+ if classname.find('Conv') != -1:
106
+ m.weight.data.normal_(0.0, 0.02)
107
+ elif classname.find('BatchNorm2d') != -1:
108
+ m.weight.data.normal_(1.0, 0.02)
109
+ m.bias.data.fill_(0)
110
+
111
+ def __define_G(self, input_nc, output_nc, ngf, netG, n_downsample_global=3, n_blocks_global=9, n_local_enhancers=1,
112
+ n_blocks_local=3, norm='instance', gpu_ids=[]):
113
+ norm_layer = self.__get_norm_layer(norm_type=norm)
114
+ netG = GlobalGenerator(input_nc, output_nc, ngf, n_downsample_global, n_blocks_global, norm_layer)
115
+
116
+ if len(gpu_ids) > 0:
117
+ netG.cuda(gpu_ids[0])
118
+ netG.apply(self.__weights_init)
119
+ return netG
120
+
121
+ def __get_norm_layer(self, norm_type='instance'):
122
+ norm_layer = functools.partial(torch.nn.InstanceNorm2d, affine=False)
123
+ return norm_layer
124
+
125
+ ##############################################################################
126
+ # Generator
127
+ ##############################################################################
128
+ class GlobalGenerator(torch.nn.Module):
129
+ def __init__(self, input_nc, output_nc, ngf=64, n_downsampling=3, n_blocks=9, norm_layer=torch.nn.BatchNorm2d,
130
+ padding_type='reflect'):
131
+ assert(n_blocks >= 0)
132
+ super(GlobalGenerator, self).__init__()
133
+ activation = torch.nn.ReLU(True)
134
+
135
+ model = [torch.nn.ReflectionPad2d(3), torch.nn.Conv2d(input_nc, ngf, kernel_size=7, padding=0), norm_layer(ngf), activation]
136
+ ### downsample
137
+ for i in range(n_downsampling):
138
+ mult = 2**i
139
+ model += [torch.nn.Conv2d(ngf * mult, ngf * mult * 2, kernel_size=3, stride=2, padding=1),
140
+ norm_layer(ngf * mult * 2), activation]
141
+
142
+ ### resnet blocks
143
+ mult = 2**n_downsampling
144
+ for i in range(n_blocks):
145
+ model += [ResnetBlock(ngf * mult, padding_type=padding_type, activation=activation, norm_layer=norm_layer)]
146
+
147
+ ### upsample
148
+ for i in range(n_downsampling):
149
+ mult = 2**(n_downsampling - i)
150
+ model += [torch.nn.ConvTranspose2d(ngf * mult, int(ngf * mult / 2), kernel_size=3, stride=2, padding=1, output_padding=1),
151
+ norm_layer(int(ngf * mult / 2)), activation]
152
+ model += [torch.nn.ReflectionPad2d(3), torch.nn.Conv2d(ngf, output_nc, kernel_size=7, padding=0), torch.nn.Tanh()]
153
+ self.model = torch.nn.Sequential(*model)
154
+
155
+ def forward(self, input):
156
+ return self.model(input)
157
+
158
+ # Define a resnet block
159
+ class ResnetBlock(torch.nn.Module):
160
+ def __init__(self, dim, padding_type, norm_layer, activation=torch.nn.ReLU(True), use_dropout=False):
161
+ super(ResnetBlock, self).__init__()
162
+ self.conv_block = self.__build_conv_block(dim, padding_type, norm_layer, activation, use_dropout)
163
+
164
+ def __build_conv_block(self, dim, padding_type, norm_layer, activation, use_dropout):
165
+ conv_block = []
166
+ p = 0
167
+ if padding_type == 'reflect':
168
+ conv_block += [torch.nn.ReflectionPad2d(1)]
169
+ elif padding_type == 'replicate':
170
+ conv_block += [torch.nn.ReplicationPad2d(1)]
171
+ elif padding_type == 'zero':
172
+ p = 1
173
+ else:
174
+ raise NotImplementedError('padding [%s] is not implemented' % padding_type)
175
+
176
+ conv_block += [torch.nn.Conv2d(dim, dim, kernel_size=3, padding=p),
177
+ norm_layer(dim),
178
+ activation]
179
+ if use_dropout:
180
+ conv_block += [torch.nn.Dropout(0.5)]
181
+
182
+ p = 0
183
+ if padding_type == 'reflect':
184
+ conv_block += [torch.nn.ReflectionPad2d(1)]
185
+ elif padding_type == 'replicate':
186
+ conv_block += [torch.nn.ReplicationPad2d(1)]
187
+ elif padding_type == 'zero':
188
+ p = 1
189
+ else:
190
+ raise NotImplementedError('padding [%s] is not implemented' % padding_type)
191
+ conv_block += [torch.nn.Conv2d(dim, dim, kernel_size=3, padding=p),
192
+ norm_layer(dim)]
193
+
194
+ return torch.nn.Sequential(*conv_block)
195
+
196
+ def forward(self, x):
197
+ out = x + self.conv_block(x)
198
+ return out
199
+
200
+ # Data utils:
201
+ def get_transform(opt, method=Image.BICUBIC, normalize=True):
202
+ transform_list = []
203
+
204
+ base = float(2 ** opt.n_downsample_global)
205
+ if opt.netG == 'local':
206
+ base *= (2 ** opt.n_local_enhancers)
207
+ transform_list.append(transforms.Lambda(lambda img: __make_power_2(img, base, method)))
208
+
209
+ transform_list += [transforms.ToTensor()]
210
+
211
+ if normalize:
212
+ transform_list += [transforms.Normalize((0.5, 0.5, 0.5),
213
+ (0.5, 0.5, 0.5))]
214
+ return transforms.Compose(transform_list)
215
+
216
+ def __make_power_2(img, base, method=Image.BICUBIC):
217
+ ow, oh = img.size
218
+ h = int(round(oh / base) * base)
219
+ w = int(round(ow / base) * base)
220
+ if (h == oh) and (w == ow):
221
+ return img
222
+ return img.resize((w, h), method)
223
+
224
+ # Converts a Tensor into a Numpy array
225
+ # |imtype|: the desired type of the converted numpy array
226
+ def tensor2im(image_tensor, imtype=np.uint8, normalize=True):
227
+ if isinstance(image_tensor, list):
228
+ image_numpy = []
229
+ for i in range(len(image_tensor)):
230
+ image_numpy.append(tensor2im(image_tensor[i], imtype, normalize))
231
+ return image_numpy
232
+ image_numpy = image_tensor.cpu().float().numpy()
233
+ if normalize:
234
+ image_numpy = (np.transpose(image_numpy, (1, 2, 0)) + 1) / 2.0 * 255.0
235
+ else:
236
+ image_numpy = np.transpose(image_numpy, (1, 2, 0)) * 255.0
237
+ image_numpy = np.clip(image_numpy, 0, 255)
238
+ if image_numpy.shape[2] == 1 or image_numpy.shape[2] > 3:
239
+ image_numpy = image_numpy[:,:,0]
240
+ return image_numpy.astype(imtype)
gggg.py ADDED
@@ -0,0 +1,78 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from run import process
2
+ import time
3
+ import subprocess
4
+ import os
5
+ import argparse
6
+ import cv2
7
+ import sys
8
+ from PIL import Image
9
+ import torch
10
+ import gradio as gr
11
+
12
+
13
+ TESTdevice = "cpu"
14
+
15
+ index = 1
16
+
17
+
18
+ """
19
+ main.py
20
+
21
+ How to run:
22
+ python main.py
23
+
24
+ """
25
+
26
+
27
+ def mainTest(inputpath, outpath):
28
+ watermark = deep_nude_process(inputpath)
29
+ cv2.imwrite(outpath, watermark)
30
+ return watermark
31
+ #
32
+
33
+
34
+ def deep_nude_process(item):
35
+ # print('Processing {}'.format(item))
36
+ # dress = cv2.imread(item)
37
+ dress = (item)
38
+ h = dress.shape[0]
39
+ w = dress.shape[1]
40
+ dress = cv2.resize(dress, (512, 512), interpolation=cv2.INTER_CUBIC)
41
+ watermark = process(dress)
42
+ watermark = cv2.resize(watermark, (w, h), interpolation=cv2.INTER_CUBIC)
43
+ return watermark
44
+
45
+
46
+ def inference(img):
47
+ global index
48
+ # inputpath = "input/" + str(index) + ".jpg"
49
+ outputpath = "out_" + str(index) + ".jpg"
50
+ # cv2.imwrite(inputpath, img)
51
+ index += 1
52
+ print(time.strftime("START!!!!!!!!! %Y-%m-%d %H:%M:%S", time.localtime()))
53
+ output = mainTest(img, outputpath)
54
+ print(time.strftime("FINISH!!!!!!!!! %Y-%m-%d %H:%M:%S", time.localtime()))
55
+ return output
56
+
57
+
58
+ title = "AI脱衣"
59
+ description = "传入人物照片,类似最下方测试图的那种,将制作脱衣图,一张图至少等40秒,别传私人照片,禁止传真人照片"
60
+
61
+ examples = [
62
+ ['input.png', '测试图'],
63
+ ]
64
+
65
+
66
+ web = gr.Interface(inference,
67
+ inputs="image",
68
+ outputs="image",
69
+ title=title,
70
+ description=description,
71
+ examples=examples,
72
+ )
73
+
74
+ if __name__ == '__main__':
75
+ web.launch(
76
+ share=True,
77
+ enable_queue=True
78
+ )
input.png ADDED
main.py ADDED
@@ -0,0 +1,49 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ import sys
3
+ import cv2
4
+ import argparse
5
+ import os
6
+ import sys
7
+ import subprocess
8
+ import time
9
+
10
+ from run import process
11
+
12
+ """
13
+ main.py
14
+
15
+ How to run:
16
+ python main.py
17
+
18
+ """
19
+
20
+
21
+ def main(inputpath, outpath, show):
22
+ if isinstance(inputpath, list):
23
+ for item in inputpath:
24
+ watermark = deep_nude_process(item)
25
+ cv2.imwrite("output_"+item, watermark)
26
+ else:
27
+ watermark = deep_nude_process(inputpath)
28
+ cv2.imwrite(outpath, watermark)
29
+
30
+ def deep_nude_process(item):
31
+ print('Processing {}'.format(item))
32
+ dress = cv2.imread(item)
33
+ h = dress.shape[0]
34
+ w = dress.shape[1]
35
+ dress = cv2.resize(dress, (512,512), interpolation=cv2.INTER_CUBIC)
36
+ watermark = process(dress)
37
+ watermark = cv2.resize(watermark, (w,h), interpolation=cv2.INTER_CUBIC)
38
+ return watermark
39
+
40
+ if __name__ == '__main__':
41
+ parser = argparse.ArgumentParser(description="simple deep nude script tool")
42
+ parser.add_argument("-i", "--input", action="store", nargs = "*", default="input.png", help = "Use to enter input one or more files's name")
43
+ parser.add_argument("-o", "--output", action="store", default="output.png", help = "Use to enter output file name")
44
+ parser.add_argument("-s", "--show", action="store", default="false", help = "Use to automatically display or not display generated images")
45
+ inputpath, outputpath, show = parser.parse_args().input, parser.parse_args().output, parser.parse_args().show
46
+
47
+ print (time.strftime("START!!!!!!!!! %Y-%m-%d %H:%M:%S", time.localtime()))
48
+ main(inputpath, outputpath, show)
49
+ print (time.strftime("FINISH!!!!!!!!! %Y-%m-%d %H:%M:%S", time.localtime()))
run.py ADDED
@@ -0,0 +1,150 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import cv2
2
+
3
+ #Import Neural Network Model
4
+ from gan import DataLoader, DeepModel, tensor2im
5
+
6
+ #OpenCv Transform:
7
+ from opencv_transform.mask_to_maskref import create_maskref
8
+ from opencv_transform.maskdet_to_maskfin import create_maskfin
9
+ from opencv_transform.dress_to_correct import create_correct
10
+ from opencv_transform.nude_to_watermark import create_watermark
11
+
12
+ """
13
+ run.py
14
+
15
+ This script manage the entire transormation.
16
+
17
+ Transformation happens in 6 phases:
18
+ 0: dress -> correct [opencv] dress_to_correct
19
+ 1: correct -> mask: [GAN] correct_to_mask
20
+ 2: mask -> maskref [opencv] mask_to_maskref
21
+ 3: maskref -> maskdet [GAN] maskref_to_maskdet
22
+ 4: maskdet -> maskfin [opencv] maskdet_to_maskfin
23
+ 5: maskfin -> nude [GAN] maskfin_to_nude
24
+ 6: nude -> watermark [opencv] nude_to_watermark
25
+
26
+ """
27
+
28
+ phases = ["dress_to_correct", "correct_to_mask", "mask_to_maskref", "maskref_to_maskdet", "maskdet_to_maskfin", "maskfin_to_nude", "nude_to_watermark"]
29
+
30
+ class Options():
31
+
32
+ #Init options with default values
33
+ def __init__(self):
34
+
35
+ # experiment specifics
36
+ self.norm = 'batch' #instance normalization or batch normalization
37
+ self.use_dropout = False #use dropout for the generator
38
+ self.data_type = 32 #Supported data type i.e. 8, 16, 32 bit
39
+
40
+ # input/output sizes
41
+ self.batchSize = 1 #input batch size
42
+ self.input_nc = 3 # of input image channels
43
+ self.output_nc = 3 # of output image channels
44
+
45
+ # for setting inputs
46
+ self.serial_batches = True #if true, takes images in order to make batches, otherwise takes them randomly
47
+ self.nThreads = 1 ## threads for loading data (???)
48
+ self.max_dataset_size = 1 #Maximum number of samples allowed per dataset. If the dataset directory contains more than max_dataset_size, only a subset is loaded.
49
+
50
+ # for generator
51
+ self.netG = 'global' #selects model to use for netG
52
+ self.ngf = 64 ## of gen filters in first conv layer
53
+ self.n_downsample_global = 4 #number of downsampling layers in netG
54
+ self.n_blocks_global = 9 #number of residual blocks in the global generator network
55
+ self.n_blocks_local = 0 #number of residual blocks in the local enhancer network
56
+ self.n_local_enhancers = 0 #number of local enhancers to use
57
+ self.niter_fix_global = 0 #number of epochs that we only train the outmost local enhancer
58
+
59
+ #Phase specific options
60
+ self.checkpoints_dir = ""
61
+ self.dataroot = ""
62
+
63
+ #Changes options accordlying to actual phase
64
+ def updateOptions(self, phase):
65
+
66
+ if phase == "correct_to_mask":
67
+ self.checkpoints_dir = "checkpoints/cm.lib"
68
+
69
+ elif phase == "maskref_to_maskdet":
70
+ self.checkpoints_dir = "checkpoints/mm.lib"
71
+
72
+ elif phase == "maskfin_to_nude":
73
+ self.checkpoints_dir = "checkpoints/mn.lib"
74
+
75
+ # process(cv_img, mode)
76
+ # return:
77
+ # watermark image
78
+ def process(cv_img):
79
+
80
+ #InMemory cv2 images:
81
+ dress = cv_img
82
+ correct = None
83
+ mask = None
84
+ maskref = None
85
+ maskfin = None
86
+ maskdet = None
87
+ nude = None
88
+ watermark = None
89
+
90
+ for index, phase in enumerate(phases):
91
+
92
+ print("Executing phase: " + phase)
93
+
94
+ #GAN phases:
95
+ if (phase == "correct_to_mask") or (phase == "maskref_to_maskdet") or (phase == "maskfin_to_nude"):
96
+
97
+ #Load global option
98
+ opt = Options()
99
+
100
+ #Load custom phase options:
101
+ opt.updateOptions(phase)
102
+
103
+ #Load Data
104
+ if (phase == "correct_to_mask"):
105
+ data_loader = DataLoader(opt, correct)
106
+ elif (phase == "maskref_to_maskdet"):
107
+ data_loader = DataLoader(opt, maskref)
108
+ elif (phase == "maskfin_to_nude"):
109
+ data_loader = DataLoader(opt, maskfin)
110
+
111
+ dataset = data_loader.load_data()
112
+
113
+ #Create Model
114
+ model = DeepModel()
115
+ model.initialize(opt)
116
+
117
+ #Run for every image:
118
+ for i, data in enumerate(dataset):
119
+
120
+ generated = model.inference(data['label'], data['inst'])
121
+
122
+ im = tensor2im(generated.data[0])
123
+
124
+ #Save Data
125
+ if (phase == "correct_to_mask"):
126
+ mask = cv2.cvtColor(im, cv2.COLOR_RGB2BGR)
127
+
128
+ elif (phase == "maskref_to_maskdet"):
129
+ maskdet = cv2.cvtColor(im, cv2.COLOR_RGB2BGR)
130
+
131
+ elif (phase == "maskfin_to_nude"):
132
+ nude = cv2.cvtColor(im, cv2.COLOR_RGB2BGR)
133
+
134
+ #Correcting:
135
+ elif (phase == 'dress_to_correct'):
136
+ correct = create_correct(dress)
137
+
138
+ #mask_ref phase (opencv)
139
+ elif (phase == "mask_to_maskref"):
140
+ maskref = create_maskref(mask, correct)
141
+
142
+ #mask_fin phase (opencv)
143
+ elif (phase == "maskdet_to_maskfin"):
144
+ maskfin = create_maskfin(maskref, maskdet)
145
+
146
+ #nude_to_watermark phase (opencv)
147
+ elif (phase == "nude_to_watermark"):
148
+ watermark = create_watermark(nude)
149
+
150
+ return watermark