Spaces:
Paused
Paused
| # MIT licensed code from https://github.com/li-plus/seam-carving/ | |
| from enum import Enum | |
| from typing import Optional, Tuple | |
| import numba as nb | |
| import numpy as np | |
| from scipy.ndimage import sobel | |
| DROP_MASK_ENERGY = 1e5 | |
| KEEP_MASK_ENERGY = 1e3 | |
| class OrderMode(str, Enum): | |
| WIDTH_FIRST = "width-first" | |
| HEIGHT_FIRST = "height-first" | |
| class EnergyMode(str, Enum): | |
| FORWARD = "forward" | |
| BACKWARD = "backward" | |
| def _list_enum(enum_class) -> Tuple: | |
| return tuple(x.value for x in enum_class) | |
| def _rgb2gray(rgb: np.ndarray) -> np.ndarray: | |
| """Convert an RGB image to a grayscale image""" | |
| coeffs = np.array([0.2125, 0.7154, 0.0721], dtype=np.float32) | |
| return (rgb @ coeffs).astype(rgb.dtype) | |
| def _get_seam_mask(src: np.ndarray, seam: np.ndarray) -> np.ndarray: | |
| """Convert a list of seam column indices to a mask""" | |
| return np.eye(src.shape[1], dtype=bool)[seam] | |
| def _remove_seam_mask(src: np.ndarray, seam_mask: np.ndarray) -> np.ndarray: | |
| """Remove a seam from the source image according to the given seam_mask""" | |
| if src.ndim == 3: | |
| h, w, c = src.shape | |
| seam_mask = np.broadcast_to(seam_mask[:, :, None], src.shape) | |
| dst = src[~seam_mask].reshape((h, w - 1, c)) | |
| else: | |
| h, w = src.shape | |
| dst = src[~seam_mask].reshape((h, w - 1)) | |
| return dst | |
| def _get_energy(gray: np.ndarray) -> np.ndarray: | |
| """Get backward energy map from the source image""" | |
| assert gray.ndim == 2 | |
| gray = gray.astype(np.float32) | |
| grad_x = sobel(gray, axis=1) | |
| grad_y = sobel(gray, axis=0) | |
| energy = np.abs(grad_x) + np.abs(grad_y) | |
| return energy | |
| def _get_backward_seam(energy: np.ndarray) -> np.ndarray: | |
| """Compute the minimum vertical seam from the backward energy map""" | |
| h, w = energy.shape | |
| inf = np.array([np.inf], dtype=np.float32) | |
| cost = np.concatenate((inf, energy[0], inf)) | |
| parent = np.empty((h, w), dtype=np.int32) | |
| base_idx = np.arange(-1, w - 1, dtype=np.int32) | |
| for r in range(1, h): | |
| choices = np.vstack((cost[:-2], cost[1:-1], cost[2:])) | |
| min_idx = np.argmin(choices, axis=0) + base_idx | |
| parent[r] = min_idx | |
| cost[1:-1] = cost[1:-1][min_idx] + energy[r] | |
| c = np.argmin(cost[1:-1]) | |
| seam = np.empty(h, dtype=np.int32) | |
| for r in range(h - 1, -1, -1): | |
| seam[r] = c | |
| c = parent[r, c] | |
| return seam | |
| def _get_backward_seams( | |
| gray: np.ndarray, num_seams: int, aux_energy: Optional[np.ndarray] | |
| ) -> np.ndarray: | |
| """Compute the minimum N vertical seams using backward energy""" | |
| h, w = gray.shape | |
| seams = np.zeros((h, w), dtype=bool) | |
| rows = np.arange(h, dtype=np.int32) | |
| idx_map = np.broadcast_to(np.arange(w, dtype=np.int32), (h, w)) | |
| energy = _get_energy(gray) | |
| if aux_energy is not None: | |
| energy += aux_energy | |
| for _ in range(num_seams): | |
| seam = _get_backward_seam(energy) | |
| seams[rows, idx_map[rows, seam]] = True | |
| seam_mask = _get_seam_mask(gray, seam) | |
| gray = _remove_seam_mask(gray, seam_mask) | |
| idx_map = _remove_seam_mask(idx_map, seam_mask) | |
| if aux_energy is not None: | |
| aux_energy = _remove_seam_mask(aux_energy, seam_mask) | |
| # Only need to re-compute the energy in the bounding box of the seam | |
| _, cur_w = energy.shape | |
| lo = max(0, np.min(seam) - 1) | |
| hi = min(cur_w, np.max(seam) + 1) | |
| pad_lo = 1 if lo > 0 else 0 | |
| pad_hi = 1 if hi < cur_w - 1 else 0 | |
| mid_block = gray[:, lo - pad_lo : hi + pad_hi] | |
| _, mid_w = mid_block.shape | |
| mid_energy = _get_energy(mid_block)[:, pad_lo : mid_w - pad_hi] | |
| if aux_energy is not None: | |
| mid_energy += aux_energy[:, lo:hi] | |
| energy = np.hstack((energy[:, :lo], mid_energy, energy[:, hi + 1 :])) | |
| return seams | |
| def _get_forward_seam(gray: np.ndarray, aux_energy: Optional[np.ndarray]) -> np.ndarray: | |
| """Compute the minimum vertical seam using forward energy""" | |
| h, w = gray.shape | |
| gray = np.hstack((gray[:, :1], gray, gray[:, -1:])) | |
| inf = np.array([np.inf], dtype=np.float32) | |
| dp = np.concatenate((inf, np.abs(gray[0, 2:] - gray[0, :-2]), inf)) | |
| parent = np.empty((h, w), dtype=np.int32) | |
| base_idx = np.arange(-1, w - 1, dtype=np.int32) | |
| inf = np.array([np.inf], dtype=np.float32) | |
| for r in range(1, h): | |
| curr_shl = gray[r, 2:] | |
| curr_shr = gray[r, :-2] | |
| cost_mid = np.abs(curr_shl - curr_shr) | |
| if aux_energy is not None: | |
| cost_mid += aux_energy[r] | |
| prev_mid = gray[r - 1, 1:-1] | |
| cost_left = cost_mid + np.abs(prev_mid - curr_shr) | |
| cost_right = cost_mid + np.abs(prev_mid - curr_shl) | |
| dp_mid = dp[1:-1] | |
| dp_left = dp[:-2] | |
| dp_right = dp[2:] | |
| choices = np.vstack( | |
| (cost_left + dp_left, cost_mid + dp_mid, cost_right + dp_right) | |
| ) | |
| min_idx = np.argmin(choices, axis=0) | |
| parent[r] = min_idx + base_idx | |
| # numba does not support specifying axis in np.min, below loop is equivalent to: | |
| # `dp_mid[:] = np.min(choices, axis=0)` or `dp_mid[:] = choices[min_idx, np.arange(w)]` | |
| for j, i in enumerate(min_idx): | |
| dp_mid[j] = choices[i, j] | |
| c = np.argmin(dp[1:-1]) | |
| seam = np.empty(h, dtype=np.int32) | |
| for r in range(h - 1, -1, -1): | |
| seam[r] = c | |
| c = parent[r, c] | |
| return seam | |
| def _get_forward_seams( | |
| gray: np.ndarray, num_seams: int, aux_energy: Optional[np.ndarray] | |
| ) -> np.ndarray: | |
| """Compute minimum N vertical seams using forward energy""" | |
| h, w = gray.shape | |
| seams = np.zeros((h, w), dtype=bool) | |
| rows = np.arange(h, dtype=np.int32) | |
| idx_map = np.broadcast_to(np.arange(w, dtype=np.int32), (h, w)) | |
| for _ in range(num_seams): | |
| seam = _get_forward_seam(gray, aux_energy) | |
| seams[rows, idx_map[rows, seam]] = True | |
| seam_mask = _get_seam_mask(gray, seam) | |
| gray = _remove_seam_mask(gray, seam_mask) | |
| idx_map = _remove_seam_mask(idx_map, seam_mask) | |
| if aux_energy is not None: | |
| aux_energy = _remove_seam_mask(aux_energy, seam_mask) | |
| return seams | |
| def _get_seams( | |
| gray: np.ndarray, num_seams: int, energy_mode: str, aux_energy: Optional[np.ndarray] | |
| ) -> np.ndarray: | |
| """Get the minimum N seams from the grayscale image""" | |
| gray = np.asarray(gray, dtype=np.float32) | |
| if energy_mode == EnergyMode.BACKWARD: | |
| return _get_backward_seams(gray, num_seams, aux_energy) | |
| elif energy_mode == EnergyMode.FORWARD: | |
| return _get_forward_seams(gray, num_seams, aux_energy) | |
| else: | |
| raise ValueError( | |
| f"expect energy_mode to be one of {_list_enum(EnergyMode)}, got {energy_mode}" | |
| ) | |
| def _reduce_width( | |
| src: np.ndarray, | |
| delta_width: int, | |
| energy_mode: str, | |
| aux_energy: Optional[np.ndarray], | |
| ) -> Tuple[np.ndarray, Optional[np.ndarray]]: | |
| """Reduce the width of image by delta_width pixels""" | |
| assert src.ndim in (2, 3) and delta_width >= 0 | |
| if src.ndim == 2: | |
| gray = src | |
| src_h, src_w = src.shape | |
| dst_shape: Tuple[int, ...] = (src_h, src_w - delta_width) | |
| else: | |
| gray = _rgb2gray(src) | |
| src_h, src_w, src_c = src.shape | |
| dst_shape = (src_h, src_w - delta_width, src_c) | |
| to_keep = ~_get_seams(gray, delta_width, energy_mode, aux_energy) | |
| dst = src[to_keep].reshape(dst_shape) | |
| if aux_energy is not None: | |
| aux_energy = aux_energy[to_keep].reshape(dst_shape[:2]) | |
| return dst, aux_energy | |
| def _insert_seams_kernel( | |
| src: np.ndarray, seams: np.ndarray, delta_width: int | |
| ) -> np.ndarray: | |
| """The numba kernel for inserting seams""" | |
| src_h, src_w, src_c = src.shape | |
| dst = np.empty((src_h, src_w + delta_width, src_c), dtype=src.dtype) | |
| for row in range(src_h): | |
| dst_col = 0 | |
| for src_col in range(src_w): | |
| if seams[row, src_col]: | |
| left = src[row, max(src_col - 1, 0)] | |
| right = src[row, src_col] | |
| dst[row, dst_col] = (left + right) / 2 | |
| dst_col += 1 | |
| dst[row, dst_col] = src[row, src_col] | |
| dst_col += 1 | |
| return dst | |
| def _insert_seams(src: np.ndarray, seams: np.ndarray, delta_width: int) -> np.ndarray: | |
| """Insert multiple seams into the source image""" | |
| dst = src.astype(np.float32) | |
| if dst.ndim == 2: | |
| dst = dst[:, :, None] | |
| dst = _insert_seams_kernel(dst, seams, delta_width).astype(src.dtype) | |
| if src.ndim == 2: | |
| dst = dst.squeeze(-1) | |
| return dst | |
| def _expand_width( | |
| src: np.ndarray, | |
| delta_width: int, | |
| energy_mode: str, | |
| aux_energy: Optional[np.ndarray], | |
| step_ratio: float, | |
| ) -> Tuple[np.ndarray, Optional[np.ndarray]]: | |
| """Expand the width of image by delta_width pixels""" | |
| assert src.ndim in (2, 3) and delta_width >= 0 | |
| if not 0 < step_ratio <= 1: | |
| raise ValueError(f"expect `step_ratio` to be between (0,1], got {step_ratio}") | |
| dst = src | |
| while delta_width > 0: | |
| max_step_size = max(1, round(step_ratio * dst.shape[1])) | |
| step_size = min(max_step_size, delta_width) | |
| gray = dst if dst.ndim == 2 else _rgb2gray(dst) | |
| seams = _get_seams(gray, step_size, energy_mode, aux_energy) | |
| dst = _insert_seams(dst, seams, step_size) | |
| if aux_energy is not None: | |
| aux_energy = _insert_seams(aux_energy, seams, step_size) | |
| delta_width -= step_size | |
| return dst, aux_energy | |
| def _resize_width( | |
| src: np.ndarray, | |
| width: int, | |
| energy_mode: str, | |
| aux_energy: Optional[np.ndarray], | |
| step_ratio: float, | |
| ) -> Tuple[np.ndarray, Optional[np.ndarray]]: | |
| """Resize the width of image by removing vertical seams""" | |
| assert src.size > 0 and src.ndim in (2, 3) | |
| assert width > 0 | |
| src_w = src.shape[1] | |
| if src_w < width: | |
| dst, aux_energy = _expand_width( | |
| src, width - src_w, energy_mode, aux_energy, step_ratio | |
| ) | |
| else: | |
| dst, aux_energy = _reduce_width(src, src_w - width, energy_mode, aux_energy) | |
| return dst, aux_energy | |
| def _transpose_image(src: np.ndarray) -> np.ndarray: | |
| """Transpose a source image in rgb or grayscale format""" | |
| if src.ndim == 3: | |
| dst = src.transpose((1, 0, 2)) | |
| else: | |
| dst = src.T | |
| return dst | |
| def _resize_height( | |
| src: np.ndarray, | |
| height: int, | |
| energy_mode: str, | |
| aux_energy: Optional[np.ndarray], | |
| step_ratio: float, | |
| ) -> Tuple[np.ndarray, Optional[np.ndarray]]: | |
| """Resize the height of image by removing horizontal seams""" | |
| assert src.ndim in (2, 3) and height > 0 | |
| if aux_energy is not None: | |
| aux_energy = aux_energy.T | |
| src = _transpose_image(src) | |
| src, aux_energy = _resize_width(src, height, energy_mode, aux_energy, step_ratio) | |
| src = _transpose_image(src) | |
| if aux_energy is not None: | |
| aux_energy = aux_energy.T | |
| return src, aux_energy | |
| def _check_mask(mask: np.ndarray, shape: Tuple[int, ...]) -> np.ndarray: | |
| """Ensure the mask to be a 2D grayscale map of specific shape""" | |
| mask = np.asarray(mask, dtype=bool) | |
| if mask.ndim != 2: | |
| raise ValueError(f"expect mask to be a 2d binary map, got shape {mask.shape}") | |
| if mask.shape != shape: | |
| raise ValueError( | |
| f"expect the shape of mask to match the image, got {mask.shape} vs {shape}" | |
| ) | |
| return mask | |
| def _check_src(src: np.ndarray) -> np.ndarray: | |
| """Ensure the source to be RGB or grayscale""" | |
| src = np.asarray(src) | |
| if src.size == 0 or src.ndim not in (2, 3): | |
| raise ValueError( | |
| f"expect a 3d rgb image or a 2d grayscale image, got image in shape {src.shape}" | |
| ) | |
| return src | |
| def seam_carving( | |
| src: np.ndarray, | |
| size: Optional[Tuple[int, int]] = None, | |
| energy_mode: str = "backward", | |
| order: str = "width-first", | |
| keep_mask: Optional[np.ndarray] = None, | |
| drop_mask: Optional[np.ndarray] = None, | |
| step_ratio: float = 0.5, | |
| ) -> np.ndarray: | |
| """Resize the image using the content-aware seam-carving algorithm. | |
| :param src: A source image in RGB or grayscale format. | |
| :param size: The target size in pixels, as a 2-tuple (width, height). | |
| :param energy_mode: Policy to compute energy for the source image. Could be | |
| one of ``backward`` or ``forward``. If ``backward``, compute the energy | |
| as the gradient at each pixel. If ``forward``, compute the energy as the | |
| distances between adjacent pixels after each pixel is removed. | |
| :param order: The order to remove horizontal and vertical seams. Could be | |
| one of ``width-first`` or ``height-first``. In ``width-first`` mode, we | |
| remove or insert all vertical seams first, then the horizontal ones, | |
| while ``height-first`` is the opposite. | |
| :param keep_mask: An optional mask where the foreground is protected from | |
| seam removal. If not specified, no area will be protected. | |
| :param drop_mask: An optional binary object mask to remove. If given, the | |
| object will be removed before resizing the image to the target size. | |
| :param step_ratio: The maximum size expansion ratio in one seam carving step. | |
| The image will be expanded in multiple steps if target size is too large. | |
| :return: A resized copy of the source image. | |
| """ | |
| src = _check_src(src) | |
| if order not in _list_enum(OrderMode): | |
| raise ValueError( | |
| f"expect order to be one of {_list_enum(OrderMode)}, got {order}" | |
| ) | |
| aux_energy = None | |
| if keep_mask is not None: | |
| keep_mask = _check_mask(keep_mask, src.shape[:2]) | |
| aux_energy = np.zeros(src.shape[:2], dtype=np.float32) | |
| aux_energy[keep_mask] += KEEP_MASK_ENERGY | |
| # remove object if `drop_mask` is given | |
| if drop_mask is not None: | |
| drop_mask = _check_mask(drop_mask, src.shape[:2]) | |
| if aux_energy is None: | |
| aux_energy = np.zeros(src.shape[:2], dtype=np.float32) | |
| aux_energy[drop_mask] -= DROP_MASK_ENERGY | |
| if order == OrderMode.HEIGHT_FIRST: | |
| src = _transpose_image(src) | |
| aux_energy = aux_energy.T | |
| num_seams = (aux_energy < 0).sum(1).max() | |
| while num_seams > 0: | |
| src, aux_energy = _reduce_width(src, num_seams, energy_mode, aux_energy) | |
| num_seams = (aux_energy < 0).sum(1).max() | |
| if order == OrderMode.HEIGHT_FIRST: | |
| src = _transpose_image(src) | |
| aux_energy = aux_energy.T | |
| # resize image if `size` is given | |
| if size is not None: | |
| width, height = size | |
| width = round(width) | |
| height = round(height) | |
| if width <= 0 or height <= 0: | |
| raise ValueError(f"expect target size to be positive, got {size}") | |
| if order == OrderMode.WIDTH_FIRST: | |
| src, aux_energy = _resize_width( | |
| src, width, energy_mode, aux_energy, step_ratio | |
| ) | |
| src, aux_energy = _resize_height( | |
| src, height, energy_mode, aux_energy, step_ratio | |
| ) | |
| else: | |
| src, aux_energy = _resize_height( | |
| src, height, energy_mode, aux_energy, step_ratio | |
| ) | |
| src, aux_energy = _resize_width( | |
| src, width, energy_mode, aux_energy, step_ratio | |
| ) | |
| return src | |