Spaces:
Paused
Paused
Upload 290 files
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +4 -0
- 5_genre_songs_list.json +0 -0
- LICENSE +21 -0
- audiocraft/.DS_Store +0 -0
- audiocraft/audiocraft/__init__.py +26 -0
- audiocraft/audiocraft/__pycache__/__init__.cpython-311.pyc +0 -0
- audiocraft/audiocraft/__pycache__/environment.cpython-311.pyc +0 -0
- audiocraft/audiocraft/__pycache__/train.cpython-311.pyc +0 -0
- audiocraft/audiocraft/adversarial/__init__.py +22 -0
- audiocraft/audiocraft/adversarial/__pycache__/__init__.cpython-311.pyc +0 -0
- audiocraft/audiocraft/adversarial/__pycache__/losses.cpython-311.pyc +0 -0
- audiocraft/audiocraft/adversarial/discriminators/__init__.py +10 -0
- audiocraft/audiocraft/adversarial/discriminators/__pycache__/__init__.cpython-311.pyc +0 -0
- audiocraft/audiocraft/adversarial/discriminators/__pycache__/base.cpython-311.pyc +0 -0
- audiocraft/audiocraft/adversarial/discriminators/__pycache__/mpd.cpython-311.pyc +0 -0
- audiocraft/audiocraft/adversarial/discriminators/__pycache__/msd.cpython-311.pyc +0 -0
- audiocraft/audiocraft/adversarial/discriminators/__pycache__/msstftd.cpython-311.pyc +0 -0
- audiocraft/audiocraft/adversarial/discriminators/base.py +34 -0
- audiocraft/audiocraft/adversarial/discriminators/mpd.py +106 -0
- audiocraft/audiocraft/adversarial/discriminators/msd.py +126 -0
- audiocraft/audiocraft/adversarial/discriminators/msstftd.py +134 -0
- audiocraft/audiocraft/adversarial/losses.py +228 -0
- audiocraft/audiocraft/data/__init__.py +10 -0
- audiocraft/audiocraft/data/__pycache__/__init__.cpython-311.pyc +0 -0
- audiocraft/audiocraft/data/__pycache__/audio.cpython-311.pyc +0 -0
- audiocraft/audiocraft/data/__pycache__/audio_dataset.cpython-311.pyc +0 -0
- audiocraft/audiocraft/data/__pycache__/audio_utils.cpython-311.pyc +0 -0
- audiocraft/audiocraft/data/__pycache__/btc_chords.cpython-311.pyc +0 -0
- audiocraft/audiocraft/data/__pycache__/chords.cpython-311.pyc +0 -0
- audiocraft/audiocraft/data/__pycache__/info_audio_dataset.cpython-311.pyc +0 -0
- audiocraft/audiocraft/data/__pycache__/music_dataset.cpython-311.pyc +0 -0
- audiocraft/audiocraft/data/__pycache__/sound_dataset.cpython-311.pyc +0 -0
- audiocraft/audiocraft/data/__pycache__/zip.cpython-311.pyc +0 -0
- audiocraft/audiocraft/data/audio.py +257 -0
- audiocraft/audiocraft/data/audio_dataset.py +614 -0
- audiocraft/audiocraft/data/audio_utils.py +385 -0
- audiocraft/audiocraft/data/btc_chords.py +524 -0
- audiocraft/audiocraft/data/chords.py +524 -0
- audiocraft/audiocraft/data/info_audio_dataset.py +110 -0
- audiocraft/audiocraft/data/music_dataset.py +349 -0
- audiocraft/audiocraft/data/sound_dataset.py +330 -0
- audiocraft/audiocraft/data/zip.py +76 -0
- audiocraft/audiocraft/environment.py +176 -0
- audiocraft/audiocraft/grids/__init__.py +6 -0
- audiocraft/audiocraft/grids/_base_explorers.py +80 -0
- audiocraft/audiocraft/grids/audiogen/__init__.py +6 -0
- audiocraft/audiocraft/grids/audiogen/audiogen_base_16khz.py +23 -0
- audiocraft/audiocraft/grids/audiogen/audiogen_pretrained_16khz_eval.py +68 -0
- audiocraft/audiocraft/grids/compression/__init__.py +6 -0
- audiocraft/audiocraft/grids/compression/_explorers.py +55 -0
.gitattributes
CHANGED
@@ -33,3 +33,7 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
audiocraft/dataset/example/clip/sample_1/no_vocal.wav filter=lfs diff=lfs merge=lfs -text
|
37 |
+
audiocraft/dataset/example/clip/sample_2/no_vocal.wav filter=lfs diff=lfs merge=lfs -text
|
38 |
+
preproc/1_beats-crop/1_mm.wav filter=lfs diff=lfs merge=lfs -text
|
39 |
+
preproc/1_beats-crop/1_nn.wav filter=lfs diff=lfs merge=lfs -text
|
5_genre_songs_list.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
LICENSE
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
MIT License
|
2 |
+
|
3 |
+
Copyright (c) 2024 Cyan
|
4 |
+
|
5 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
6 |
+
of this software and associated documentation files (the "Software"), to deal
|
7 |
+
in the Software without restriction, including without limitation the rights
|
8 |
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9 |
+
copies of the Software, and to permit persons to whom the Software is
|
10 |
+
furnished to do so, subject to the following conditions:
|
11 |
+
|
12 |
+
The above copyright notice and this permission notice shall be included in all
|
13 |
+
copies or substantial portions of the Software.
|
14 |
+
|
15 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16 |
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17 |
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18 |
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19 |
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20 |
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21 |
+
SOFTWARE.
|
audiocraft/.DS_Store
ADDED
Binary file (6.15 kB). View file
|
|
audiocraft/audiocraft/__init__.py
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
+
# All rights reserved.
|
3 |
+
#
|
4 |
+
# This source code is licensed under the license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
6 |
+
"""
|
7 |
+
AudioCraft is a general framework for training audio generative models.
|
8 |
+
At the moment we provide the training code for:
|
9 |
+
|
10 |
+
- [MusicGen](https://arxiv.org/abs/2306.05284), a state-of-the-art
|
11 |
+
text-to-music and melody+text autoregressive generative model.
|
12 |
+
For the solver, see `audiocraft.solvers.musicgen.MusicGenSolver`, and for the model,
|
13 |
+
`audiocraft.models.musicgen.MusicGen`.
|
14 |
+
- [AudioGen](https://arxiv.org/abs/2209.15352), a state-of-the-art
|
15 |
+
text-to-general-audio generative model.
|
16 |
+
- [EnCodec](https://arxiv.org/abs/2210.13438), efficient and high fidelity
|
17 |
+
neural audio codec which provides an excellent tokenizer for autoregressive language models.
|
18 |
+
See `audiocraft.solvers.compression.CompressionSolver`, and `audiocraft.models.encodec.EncodecModel`.
|
19 |
+
- [MultiBandDiffusion](TODO), alternative diffusion-based decoder compatible with EnCodec that
|
20 |
+
improves the perceived quality and reduces the artifacts coming from adversarial decoders.
|
21 |
+
"""
|
22 |
+
|
23 |
+
# flake8: noqa
|
24 |
+
from . import data, modules, models
|
25 |
+
|
26 |
+
__version__ = '1.0.0'
|
audiocraft/audiocraft/__pycache__/__init__.cpython-311.pyc
ADDED
Binary file (1.29 kB). View file
|
|
audiocraft/audiocraft/__pycache__/environment.cpython-311.pyc
ADDED
Binary file (10.5 kB). View file
|
|
audiocraft/audiocraft/__pycache__/train.cpython-311.pyc
ADDED
Binary file (9.52 kB). View file
|
|
audiocraft/audiocraft/adversarial/__init__.py
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
+
# All rights reserved.
|
3 |
+
#
|
4 |
+
# This source code is licensed under the license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
6 |
+
"""Adversarial losses and discriminator architectures."""
|
7 |
+
|
8 |
+
# flake8: noqa
|
9 |
+
from .discriminators import (
|
10 |
+
MultiPeriodDiscriminator,
|
11 |
+
MultiScaleDiscriminator,
|
12 |
+
MultiScaleSTFTDiscriminator
|
13 |
+
)
|
14 |
+
from .losses import (
|
15 |
+
AdversarialLoss,
|
16 |
+
AdvLossType,
|
17 |
+
get_adv_criterion,
|
18 |
+
get_fake_criterion,
|
19 |
+
get_real_criterion,
|
20 |
+
FeatLossType,
|
21 |
+
FeatureMatchingLoss
|
22 |
+
)
|
audiocraft/audiocraft/adversarial/__pycache__/__init__.cpython-311.pyc
ADDED
Binary file (740 Bytes). View file
|
|
audiocraft/audiocraft/adversarial/__pycache__/losses.cpython-311.pyc
ADDED
Binary file (15.9 kB). View file
|
|
audiocraft/audiocraft/adversarial/discriminators/__init__.py
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
+
# All rights reserved.
|
3 |
+
#
|
4 |
+
# This source code is licensed under the license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
6 |
+
|
7 |
+
# flake8: noqa
|
8 |
+
from .mpd import MultiPeriodDiscriminator
|
9 |
+
from .msd import MultiScaleDiscriminator
|
10 |
+
from .msstftd import MultiScaleSTFTDiscriminator
|
audiocraft/audiocraft/adversarial/discriminators/__pycache__/__init__.cpython-311.pyc
ADDED
Binary file (411 Bytes). View file
|
|
audiocraft/audiocraft/adversarial/discriminators/__pycache__/base.cpython-311.pyc
ADDED
Binary file (1.87 kB). View file
|
|
audiocraft/audiocraft/adversarial/discriminators/__pycache__/mpd.cpython-311.pyc
ADDED
Binary file (7.01 kB). View file
|
|
audiocraft/audiocraft/adversarial/discriminators/__pycache__/msd.cpython-311.pyc
ADDED
Binary file (8.88 kB). View file
|
|
audiocraft/audiocraft/adversarial/discriminators/__pycache__/msstftd.cpython-311.pyc
ADDED
Binary file (9.98 kB). View file
|
|
audiocraft/audiocraft/adversarial/discriminators/base.py
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
+
# All rights reserved.
|
3 |
+
#
|
4 |
+
# This source code is licensed under the license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
6 |
+
|
7 |
+
from abc import ABC, abstractmethod
|
8 |
+
import typing as tp
|
9 |
+
|
10 |
+
import torch
|
11 |
+
import torch.nn as nn
|
12 |
+
|
13 |
+
|
14 |
+
FeatureMapType = tp.List[torch.Tensor]
|
15 |
+
LogitsType = torch.Tensor
|
16 |
+
MultiDiscriminatorOutputType = tp.Tuple[tp.List[LogitsType], tp.List[FeatureMapType]]
|
17 |
+
|
18 |
+
|
19 |
+
class MultiDiscriminator(ABC, nn.Module):
|
20 |
+
"""Base implementation for discriminators composed of sub-discriminators acting at different scales.
|
21 |
+
"""
|
22 |
+
def __init__(self):
|
23 |
+
super().__init__()
|
24 |
+
|
25 |
+
@abstractmethod
|
26 |
+
def forward(self, x: torch.Tensor) -> MultiDiscriminatorOutputType:
|
27 |
+
...
|
28 |
+
|
29 |
+
@property
|
30 |
+
@abstractmethod
|
31 |
+
def num_discriminators(self) -> int:
|
32 |
+
"""Number of discriminators.
|
33 |
+
"""
|
34 |
+
...
|
audiocraft/audiocraft/adversarial/discriminators/mpd.py
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
+
# All rights reserved.
|
3 |
+
#
|
4 |
+
# This source code is licensed under the license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
6 |
+
|
7 |
+
import typing as tp
|
8 |
+
|
9 |
+
import torch
|
10 |
+
import torch.nn as nn
|
11 |
+
import torch.nn.functional as F
|
12 |
+
|
13 |
+
from ...modules import NormConv2d
|
14 |
+
from .base import MultiDiscriminator, MultiDiscriminatorOutputType
|
15 |
+
|
16 |
+
|
17 |
+
def get_padding(kernel_size: int, dilation: int = 1) -> int:
|
18 |
+
return int((kernel_size * dilation - dilation) / 2)
|
19 |
+
|
20 |
+
|
21 |
+
class PeriodDiscriminator(nn.Module):
|
22 |
+
"""Period sub-discriminator.
|
23 |
+
|
24 |
+
Args:
|
25 |
+
period (int): Period between samples of audio.
|
26 |
+
in_channels (int): Number of input channels.
|
27 |
+
out_channels (int): Number of output channels.
|
28 |
+
n_layers (int): Number of convolutional layers.
|
29 |
+
kernel_sizes (list of int): Kernel sizes for convolutions.
|
30 |
+
stride (int): Stride for convolutions.
|
31 |
+
filters (int): Initial number of filters in convolutions.
|
32 |
+
filters_scale (int): Multiplier of number of filters as we increase depth.
|
33 |
+
max_filters (int): Maximum number of filters.
|
34 |
+
norm (str): Normalization method.
|
35 |
+
activation (str): Activation function.
|
36 |
+
activation_params (dict): Parameters to provide to the activation function.
|
37 |
+
"""
|
38 |
+
def __init__(self, period: int, in_channels: int = 1, out_channels: int = 1,
|
39 |
+
n_layers: int = 5, kernel_sizes: tp.List[int] = [5, 3], stride: int = 3,
|
40 |
+
filters: int = 8, filters_scale: int = 4, max_filters: int = 1024,
|
41 |
+
norm: str = 'weight_norm', activation: str = 'LeakyReLU',
|
42 |
+
activation_params: dict = {'negative_slope': 0.2}):
|
43 |
+
super().__init__()
|
44 |
+
self.period = period
|
45 |
+
self.n_layers = n_layers
|
46 |
+
self.activation = getattr(torch.nn, activation)(**activation_params)
|
47 |
+
self.convs = nn.ModuleList()
|
48 |
+
in_chs = in_channels
|
49 |
+
for i in range(self.n_layers):
|
50 |
+
out_chs = min(filters * (filters_scale ** (i + 1)), max_filters)
|
51 |
+
eff_stride = 1 if i == self.n_layers - 1 else stride
|
52 |
+
self.convs.append(NormConv2d(in_chs, out_chs, kernel_size=(kernel_sizes[0], 1), stride=(eff_stride, 1),
|
53 |
+
padding=((kernel_sizes[0] - 1) // 2, 0), norm=norm))
|
54 |
+
in_chs = out_chs
|
55 |
+
self.conv_post = NormConv2d(in_chs, out_channels, kernel_size=(kernel_sizes[1], 1), stride=1,
|
56 |
+
padding=((kernel_sizes[1] - 1) // 2, 0), norm=norm)
|
57 |
+
|
58 |
+
def forward(self, x: torch.Tensor):
|
59 |
+
fmap = []
|
60 |
+
# 1d to 2d
|
61 |
+
b, c, t = x.shape
|
62 |
+
if t % self.period != 0: # pad first
|
63 |
+
n_pad = self.period - (t % self.period)
|
64 |
+
x = F.pad(x, (0, n_pad), 'reflect')
|
65 |
+
t = t + n_pad
|
66 |
+
x = x.view(b, c, t // self.period, self.period)
|
67 |
+
|
68 |
+
for conv in self.convs:
|
69 |
+
x = conv(x)
|
70 |
+
x = self.activation(x)
|
71 |
+
fmap.append(x)
|
72 |
+
x = self.conv_post(x)
|
73 |
+
fmap.append(x)
|
74 |
+
# x = torch.flatten(x, 1, -1)
|
75 |
+
|
76 |
+
return x, fmap
|
77 |
+
|
78 |
+
|
79 |
+
class MultiPeriodDiscriminator(MultiDiscriminator):
|
80 |
+
"""Multi-Period (MPD) Discriminator.
|
81 |
+
|
82 |
+
Args:
|
83 |
+
in_channels (int): Number of input channels.
|
84 |
+
out_channels (int): Number of output channels.
|
85 |
+
periods (Sequence[int]): Periods between samples of audio for the sub-discriminators.
|
86 |
+
**kwargs: Additional args for `PeriodDiscriminator`
|
87 |
+
"""
|
88 |
+
def __init__(self, in_channels: int = 1, out_channels: int = 1,
|
89 |
+
periods: tp.Sequence[int] = [2, 3, 5, 7, 11], **kwargs):
|
90 |
+
super().__init__()
|
91 |
+
self.discriminators = nn.ModuleList([
|
92 |
+
PeriodDiscriminator(p, in_channels, out_channels, **kwargs) for p in periods
|
93 |
+
])
|
94 |
+
|
95 |
+
@property
|
96 |
+
def num_discriminators(self):
|
97 |
+
return len(self.discriminators)
|
98 |
+
|
99 |
+
def forward(self, x: torch.Tensor) -> MultiDiscriminatorOutputType:
|
100 |
+
logits = []
|
101 |
+
fmaps = []
|
102 |
+
for disc in self.discriminators:
|
103 |
+
logit, fmap = disc(x)
|
104 |
+
logits.append(logit)
|
105 |
+
fmaps.append(fmap)
|
106 |
+
return logits, fmaps
|
audiocraft/audiocraft/adversarial/discriminators/msd.py
ADDED
@@ -0,0 +1,126 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
+
# All rights reserved.
|
3 |
+
#
|
4 |
+
# This source code is licensed under the license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
6 |
+
|
7 |
+
import typing as tp
|
8 |
+
|
9 |
+
import numpy as np
|
10 |
+
import torch
|
11 |
+
import torch.nn as nn
|
12 |
+
|
13 |
+
from ...modules import NormConv1d
|
14 |
+
from .base import MultiDiscriminator, MultiDiscriminatorOutputType
|
15 |
+
|
16 |
+
|
17 |
+
class ScaleDiscriminator(nn.Module):
|
18 |
+
"""Waveform sub-discriminator.
|
19 |
+
|
20 |
+
Args:
|
21 |
+
in_channels (int): Number of input channels.
|
22 |
+
out_channels (int): Number of output channels.
|
23 |
+
kernel_sizes (Sequence[int]): Kernel sizes for first and last convolutions.
|
24 |
+
filters (int): Number of initial filters for convolutions.
|
25 |
+
max_filters (int): Maximum number of filters.
|
26 |
+
downsample_scales (Sequence[int]): Scale for downsampling implemented as strided convolutions.
|
27 |
+
inner_kernel_sizes (Sequence[int] or None): Kernel sizes for inner convolutions.
|
28 |
+
groups (Sequence[int] or None): Groups for inner convolutions.
|
29 |
+
strides (Sequence[int] or None): Strides for inner convolutions.
|
30 |
+
paddings (Sequence[int] or None): Paddings for inner convolutions.
|
31 |
+
norm (str): Normalization method.
|
32 |
+
activation (str): Activation function.
|
33 |
+
activation_params (dict): Parameters to provide to the activation function.
|
34 |
+
pad (str): Padding for initial convolution.
|
35 |
+
pad_params (dict): Parameters to provide to the padding module.
|
36 |
+
"""
|
37 |
+
def __init__(self, in_channels=1, out_channels=1, kernel_sizes: tp.Sequence[int] = [5, 3],
|
38 |
+
filters: int = 16, max_filters: int = 1024, downsample_scales: tp.Sequence[int] = [4, 4, 4, 4],
|
39 |
+
inner_kernel_sizes: tp.Optional[tp.Sequence[int]] = None, groups: tp.Optional[tp.Sequence[int]] = None,
|
40 |
+
strides: tp.Optional[tp.Sequence[int]] = None, paddings: tp.Optional[tp.Sequence[int]] = None,
|
41 |
+
norm: str = 'weight_norm', activation: str = 'LeakyReLU',
|
42 |
+
activation_params: dict = {'negative_slope': 0.2}, pad: str = 'ReflectionPad1d',
|
43 |
+
pad_params: dict = {}):
|
44 |
+
super().__init__()
|
45 |
+
assert len(kernel_sizes) == 2
|
46 |
+
assert kernel_sizes[0] % 2 == 1
|
47 |
+
assert kernel_sizes[1] % 2 == 1
|
48 |
+
assert (inner_kernel_sizes is None or len(inner_kernel_sizes) == len(downsample_scales))
|
49 |
+
assert (groups is None or len(groups) == len(downsample_scales))
|
50 |
+
assert (strides is None or len(strides) == len(downsample_scales))
|
51 |
+
assert (paddings is None or len(paddings) == len(downsample_scales))
|
52 |
+
self.activation = getattr(torch.nn, activation)(**activation_params)
|
53 |
+
self.convs = nn.ModuleList()
|
54 |
+
self.convs.append(
|
55 |
+
nn.Sequential(
|
56 |
+
getattr(torch.nn, pad)((np.prod(kernel_sizes) - 1) // 2, **pad_params),
|
57 |
+
NormConv1d(in_channels, filters, kernel_size=np.prod(kernel_sizes), stride=1, norm=norm)
|
58 |
+
)
|
59 |
+
)
|
60 |
+
|
61 |
+
in_chs = filters
|
62 |
+
for i, downsample_scale in enumerate(downsample_scales):
|
63 |
+
out_chs = min(in_chs * downsample_scale, max_filters)
|
64 |
+
default_kernel_size = downsample_scale * 10 + 1
|
65 |
+
default_stride = downsample_scale
|
66 |
+
default_padding = (default_kernel_size - 1) // 2
|
67 |
+
default_groups = in_chs // 4
|
68 |
+
self.convs.append(
|
69 |
+
NormConv1d(in_chs, out_chs,
|
70 |
+
kernel_size=inner_kernel_sizes[i] if inner_kernel_sizes else default_kernel_size,
|
71 |
+
stride=strides[i] if strides else default_stride,
|
72 |
+
groups=groups[i] if groups else default_groups,
|
73 |
+
padding=paddings[i] if paddings else default_padding,
|
74 |
+
norm=norm))
|
75 |
+
in_chs = out_chs
|
76 |
+
|
77 |
+
out_chs = min(in_chs * 2, max_filters)
|
78 |
+
self.convs.append(NormConv1d(in_chs, out_chs, kernel_size=kernel_sizes[0], stride=1,
|
79 |
+
padding=(kernel_sizes[0] - 1) // 2, norm=norm))
|
80 |
+
self.conv_post = NormConv1d(out_chs, out_channels, kernel_size=kernel_sizes[1], stride=1,
|
81 |
+
padding=(kernel_sizes[1] - 1) // 2, norm=norm)
|
82 |
+
|
83 |
+
def forward(self, x: torch.Tensor):
|
84 |
+
fmap = []
|
85 |
+
for layer in self.convs:
|
86 |
+
x = layer(x)
|
87 |
+
x = self.activation(x)
|
88 |
+
fmap.append(x)
|
89 |
+
x = self.conv_post(x)
|
90 |
+
fmap.append(x)
|
91 |
+
# x = torch.flatten(x, 1, -1)
|
92 |
+
return x, fmap
|
93 |
+
|
94 |
+
|
95 |
+
class MultiScaleDiscriminator(MultiDiscriminator):
|
96 |
+
"""Multi-Scale (MSD) Discriminator,
|
97 |
+
|
98 |
+
Args:
|
99 |
+
in_channels (int): Number of input channels.
|
100 |
+
out_channels (int): Number of output channels.
|
101 |
+
downsample_factor (int): Downsampling factor between the different scales.
|
102 |
+
scale_norms (Sequence[str]): Normalization for each sub-discriminator.
|
103 |
+
**kwargs: Additional args for ScaleDiscriminator.
|
104 |
+
"""
|
105 |
+
def __init__(self, in_channels: int = 1, out_channels: int = 1, downsample_factor: int = 2,
|
106 |
+
scale_norms: tp.Sequence[str] = ['weight_norm', 'weight_norm', 'weight_norm'], **kwargs):
|
107 |
+
super().__init__()
|
108 |
+
self.discriminators = nn.ModuleList([
|
109 |
+
ScaleDiscriminator(in_channels, out_channels, norm=norm, **kwargs) for norm in scale_norms
|
110 |
+
])
|
111 |
+
self.downsample = nn.AvgPool1d(downsample_factor * 2, downsample_factor, padding=downsample_factor)
|
112 |
+
|
113 |
+
@property
|
114 |
+
def num_discriminators(self):
|
115 |
+
return len(self.discriminators)
|
116 |
+
|
117 |
+
def forward(self, x: torch.Tensor) -> MultiDiscriminatorOutputType:
|
118 |
+
logits = []
|
119 |
+
fmaps = []
|
120 |
+
for i, disc in enumerate(self.discriminators):
|
121 |
+
if i != 0:
|
122 |
+
self.downsample(x)
|
123 |
+
logit, fmap = disc(x)
|
124 |
+
logits.append(logit)
|
125 |
+
fmaps.append(fmap)
|
126 |
+
return logits, fmaps
|
audiocraft/audiocraft/adversarial/discriminators/msstftd.py
ADDED
@@ -0,0 +1,134 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
+
# All rights reserved.
|
3 |
+
#
|
4 |
+
# This source code is licensed under the license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
6 |
+
|
7 |
+
import typing as tp
|
8 |
+
|
9 |
+
import torchaudio
|
10 |
+
import torch
|
11 |
+
from torch import nn
|
12 |
+
from einops import rearrange
|
13 |
+
|
14 |
+
from ...modules import NormConv2d
|
15 |
+
from .base import MultiDiscriminator, MultiDiscriminatorOutputType
|
16 |
+
|
17 |
+
|
18 |
+
def get_2d_padding(kernel_size: tp.Tuple[int, int], dilation: tp.Tuple[int, int] = (1, 1)):
|
19 |
+
return (((kernel_size[0] - 1) * dilation[0]) // 2, ((kernel_size[1] - 1) * dilation[1]) // 2)
|
20 |
+
|
21 |
+
|
22 |
+
class DiscriminatorSTFT(nn.Module):
|
23 |
+
"""STFT sub-discriminator.
|
24 |
+
|
25 |
+
Args:
|
26 |
+
filters (int): Number of filters in convolutions.
|
27 |
+
in_channels (int): Number of input channels.
|
28 |
+
out_channels (int): Number of output channels.
|
29 |
+
n_fft (int): Size of FFT for each scale.
|
30 |
+
hop_length (int): Length of hop between STFT windows for each scale.
|
31 |
+
kernel_size (tuple of int): Inner Conv2d kernel sizes.
|
32 |
+
stride (tuple of int): Inner Conv2d strides.
|
33 |
+
dilations (list of int): Inner Conv2d dilation on the time dimension.
|
34 |
+
win_length (int): Window size for each scale.
|
35 |
+
normalized (bool): Whether to normalize by magnitude after stft.
|
36 |
+
norm (str): Normalization method.
|
37 |
+
activation (str): Activation function.
|
38 |
+
activation_params (dict): Parameters to provide to the activation function.
|
39 |
+
growth (int): Growth factor for the filters.
|
40 |
+
"""
|
41 |
+
def __init__(self, filters: int, in_channels: int = 1, out_channels: int = 1,
|
42 |
+
n_fft: int = 1024, hop_length: int = 256, win_length: int = 1024, max_filters: int = 1024,
|
43 |
+
filters_scale: int = 1, kernel_size: tp.Tuple[int, int] = (3, 9), dilations: tp.List = [1, 2, 4],
|
44 |
+
stride: tp.Tuple[int, int] = (1, 2), normalized: bool = True, norm: str = 'weight_norm',
|
45 |
+
activation: str = 'LeakyReLU', activation_params: dict = {'negative_slope': 0.2}):
|
46 |
+
super().__init__()
|
47 |
+
assert len(kernel_size) == 2
|
48 |
+
assert len(stride) == 2
|
49 |
+
self.filters = filters
|
50 |
+
self.in_channels = in_channels
|
51 |
+
self.out_channels = out_channels
|
52 |
+
self.n_fft = n_fft
|
53 |
+
self.hop_length = hop_length
|
54 |
+
self.win_length = win_length
|
55 |
+
self.normalized = normalized
|
56 |
+
self.activation = getattr(torch.nn, activation)(**activation_params)
|
57 |
+
self.spec_transform = torchaudio.transforms.Spectrogram(
|
58 |
+
n_fft=self.n_fft, hop_length=self.hop_length, win_length=self.win_length, window_fn=torch.hann_window,
|
59 |
+
normalized=self.normalized, center=False, pad_mode=None, power=None)
|
60 |
+
spec_channels = 2 * self.in_channels
|
61 |
+
self.convs = nn.ModuleList()
|
62 |
+
self.convs.append(
|
63 |
+
NormConv2d(spec_channels, self.filters, kernel_size=kernel_size, padding=get_2d_padding(kernel_size))
|
64 |
+
)
|
65 |
+
in_chs = min(filters_scale * self.filters, max_filters)
|
66 |
+
for i, dilation in enumerate(dilations):
|
67 |
+
out_chs = min((filters_scale ** (i + 1)) * self.filters, max_filters)
|
68 |
+
self.convs.append(NormConv2d(in_chs, out_chs, kernel_size=kernel_size, stride=stride,
|
69 |
+
dilation=(dilation, 1), padding=get_2d_padding(kernel_size, (dilation, 1)),
|
70 |
+
norm=norm))
|
71 |
+
in_chs = out_chs
|
72 |
+
out_chs = min((filters_scale ** (len(dilations) + 1)) * self.filters, max_filters)
|
73 |
+
self.convs.append(NormConv2d(in_chs, out_chs, kernel_size=(kernel_size[0], kernel_size[0]),
|
74 |
+
padding=get_2d_padding((kernel_size[0], kernel_size[0])),
|
75 |
+
norm=norm))
|
76 |
+
self.conv_post = NormConv2d(out_chs, self.out_channels,
|
77 |
+
kernel_size=(kernel_size[0], kernel_size[0]),
|
78 |
+
padding=get_2d_padding((kernel_size[0], kernel_size[0])),
|
79 |
+
norm=norm)
|
80 |
+
|
81 |
+
def forward(self, x: torch.Tensor):
|
82 |
+
fmap = []
|
83 |
+
z = self.spec_transform(x) # [B, 2, Freq, Frames, 2]
|
84 |
+
z = torch.cat([z.real, z.imag], dim=1)
|
85 |
+
z = rearrange(z, 'b c w t -> b c t w')
|
86 |
+
for i, layer in enumerate(self.convs):
|
87 |
+
z = layer(z)
|
88 |
+
z = self.activation(z)
|
89 |
+
fmap.append(z)
|
90 |
+
z = self.conv_post(z)
|
91 |
+
return z, fmap
|
92 |
+
|
93 |
+
|
94 |
+
class MultiScaleSTFTDiscriminator(MultiDiscriminator):
|
95 |
+
"""Multi-Scale STFT (MS-STFT) discriminator.
|
96 |
+
|
97 |
+
Args:
|
98 |
+
filters (int): Number of filters in convolutions.
|
99 |
+
in_channels (int): Number of input channels.
|
100 |
+
out_channels (int): Number of output channels.
|
101 |
+
sep_channels (bool): Separate channels to distinct samples for stereo support.
|
102 |
+
n_ffts (Sequence[int]): Size of FFT for each scale.
|
103 |
+
hop_lengths (Sequence[int]): Length of hop between STFT windows for each scale.
|
104 |
+
win_lengths (Sequence[int]): Window size for each scale.
|
105 |
+
**kwargs: Additional args for STFTDiscriminator.
|
106 |
+
"""
|
107 |
+
def __init__(self, filters: int, in_channels: int = 1, out_channels: int = 1, sep_channels: bool = False,
|
108 |
+
n_ffts: tp.List[int] = [1024, 2048, 512], hop_lengths: tp.List[int] = [256, 512, 128],
|
109 |
+
win_lengths: tp.List[int] = [1024, 2048, 512], **kwargs):
|
110 |
+
super().__init__()
|
111 |
+
assert len(n_ffts) == len(hop_lengths) == len(win_lengths)
|
112 |
+
self.sep_channels = sep_channels
|
113 |
+
self.discriminators = nn.ModuleList([
|
114 |
+
DiscriminatorSTFT(filters, in_channels=in_channels, out_channels=out_channels,
|
115 |
+
n_fft=n_ffts[i], win_length=win_lengths[i], hop_length=hop_lengths[i], **kwargs)
|
116 |
+
for i in range(len(n_ffts))
|
117 |
+
])
|
118 |
+
|
119 |
+
@property
|
120 |
+
def num_discriminators(self):
|
121 |
+
return len(self.discriminators)
|
122 |
+
|
123 |
+
def _separate_channels(self, x: torch.Tensor) -> torch.Tensor:
|
124 |
+
B, C, T = x.shape
|
125 |
+
return x.view(-1, 1, T)
|
126 |
+
|
127 |
+
def forward(self, x: torch.Tensor) -> MultiDiscriminatorOutputType:
|
128 |
+
logits = []
|
129 |
+
fmaps = []
|
130 |
+
for disc in self.discriminators:
|
131 |
+
logit, fmap = disc(x)
|
132 |
+
logits.append(logit)
|
133 |
+
fmaps.append(fmap)
|
134 |
+
return logits, fmaps
|
audiocraft/audiocraft/adversarial/losses.py
ADDED
@@ -0,0 +1,228 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
+
# All rights reserved.
|
3 |
+
#
|
4 |
+
# This source code is licensed under the license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
6 |
+
|
7 |
+
"""
|
8 |
+
Utility module to handle adversarial losses without requiring to mess up the main training loop.
|
9 |
+
"""
|
10 |
+
|
11 |
+
import typing as tp
|
12 |
+
|
13 |
+
import flashy
|
14 |
+
import torch
|
15 |
+
import torch.nn as nn
|
16 |
+
import torch.nn.functional as F
|
17 |
+
|
18 |
+
|
19 |
+
ADVERSARIAL_LOSSES = ['mse', 'hinge', 'hinge2']
|
20 |
+
|
21 |
+
|
22 |
+
AdvLossType = tp.Union[nn.Module, tp.Callable[[torch.Tensor], torch.Tensor]]
|
23 |
+
FeatLossType = tp.Union[nn.Module, tp.Callable[[torch.Tensor, torch.Tensor], torch.Tensor]]
|
24 |
+
|
25 |
+
|
26 |
+
class AdversarialLoss(nn.Module):
|
27 |
+
"""Adversary training wrapper.
|
28 |
+
|
29 |
+
Args:
|
30 |
+
adversary (nn.Module): The adversary module will be used to estimate the logits given the fake and real samples.
|
31 |
+
We assume here the adversary output is ``Tuple[List[torch.Tensor], List[List[torch.Tensor]]]``
|
32 |
+
where the first item is a list of logits and the second item is a list of feature maps.
|
33 |
+
optimizer (torch.optim.Optimizer): Optimizer used for training the given module.
|
34 |
+
loss (AdvLossType): Loss function for generator training.
|
35 |
+
loss_real (AdvLossType): Loss function for adversarial training on logits from real samples.
|
36 |
+
loss_fake (AdvLossType): Loss function for adversarial training on logits from fake samples.
|
37 |
+
loss_feat (FeatLossType): Feature matching loss function for generator training.
|
38 |
+
normalize (bool): Whether to normalize by number of sub-discriminators.
|
39 |
+
|
40 |
+
Example of usage:
|
41 |
+
adv_loss = AdversarialLoss(adversaries, optimizer, loss, loss_real, loss_fake)
|
42 |
+
for real in loader:
|
43 |
+
noise = torch.randn(...)
|
44 |
+
fake = model(noise)
|
45 |
+
adv_loss.train_adv(fake, real)
|
46 |
+
loss, _ = adv_loss(fake, real)
|
47 |
+
loss.backward()
|
48 |
+
"""
|
49 |
+
def __init__(self,
|
50 |
+
adversary: nn.Module,
|
51 |
+
optimizer: torch.optim.Optimizer,
|
52 |
+
loss: AdvLossType,
|
53 |
+
loss_real: AdvLossType,
|
54 |
+
loss_fake: AdvLossType,
|
55 |
+
loss_feat: tp.Optional[FeatLossType] = None,
|
56 |
+
normalize: bool = True):
|
57 |
+
super().__init__()
|
58 |
+
self.adversary: nn.Module = adversary
|
59 |
+
flashy.distrib.broadcast_model(self.adversary)
|
60 |
+
self.optimizer = optimizer
|
61 |
+
self.loss = loss
|
62 |
+
self.loss_real = loss_real
|
63 |
+
self.loss_fake = loss_fake
|
64 |
+
self.loss_feat = loss_feat
|
65 |
+
self.normalize = normalize
|
66 |
+
|
67 |
+
def _save_to_state_dict(self, destination, prefix, keep_vars):
|
68 |
+
# Add the optimizer state dict inside our own.
|
69 |
+
super()._save_to_state_dict(destination, prefix, keep_vars)
|
70 |
+
destination[prefix + 'optimizer'] = self.optimizer.state_dict()
|
71 |
+
return destination
|
72 |
+
|
73 |
+
def _load_from_state_dict(self, state_dict, prefix, *args, **kwargs):
|
74 |
+
# Load optimizer state.
|
75 |
+
self.optimizer.load_state_dict(state_dict.pop(prefix + 'optimizer'))
|
76 |
+
super()._load_from_state_dict(state_dict, prefix, *args, **kwargs)
|
77 |
+
|
78 |
+
def get_adversary_pred(self, x):
|
79 |
+
"""Run adversary model, validating expected output format."""
|
80 |
+
logits, fmaps = self.adversary(x)
|
81 |
+
assert isinstance(logits, list) and all([isinstance(t, torch.Tensor) for t in logits]), \
|
82 |
+
f'Expecting a list of tensors as logits but {type(logits)} found.'
|
83 |
+
assert isinstance(fmaps, list), f'Expecting a list of features maps but {type(fmaps)} found.'
|
84 |
+
for fmap in fmaps:
|
85 |
+
assert isinstance(fmap, list) and all([isinstance(f, torch.Tensor) for f in fmap]), \
|
86 |
+
f'Expecting a list of tensors as feature maps but {type(fmap)} found.'
|
87 |
+
return logits, fmaps
|
88 |
+
|
89 |
+
def train_adv(self, fake: torch.Tensor, real: torch.Tensor) -> torch.Tensor:
|
90 |
+
"""Train the adversary with the given fake and real example.
|
91 |
+
|
92 |
+
We assume the adversary output is the following format: Tuple[List[torch.Tensor], List[List[torch.Tensor]]].
|
93 |
+
The first item being the logits and second item being a list of feature maps for each sub-discriminator.
|
94 |
+
|
95 |
+
This will automatically synchronize gradients (with `flashy.distrib.eager_sync_model`)
|
96 |
+
and call the optimizer.
|
97 |
+
"""
|
98 |
+
loss = torch.tensor(0., device=fake.device)
|
99 |
+
all_logits_fake_is_fake, _ = self.get_adversary_pred(fake.detach())
|
100 |
+
all_logits_real_is_fake, _ = self.get_adversary_pred(real.detach())
|
101 |
+
n_sub_adversaries = len(all_logits_fake_is_fake)
|
102 |
+
for logit_fake_is_fake, logit_real_is_fake in zip(all_logits_fake_is_fake, all_logits_real_is_fake):
|
103 |
+
loss += self.loss_fake(logit_fake_is_fake) + self.loss_real(logit_real_is_fake)
|
104 |
+
|
105 |
+
if self.normalize:
|
106 |
+
loss /= n_sub_adversaries
|
107 |
+
|
108 |
+
self.optimizer.zero_grad()
|
109 |
+
with flashy.distrib.eager_sync_model(self.adversary):
|
110 |
+
loss.backward()
|
111 |
+
self.optimizer.step()
|
112 |
+
|
113 |
+
return loss
|
114 |
+
|
115 |
+
def forward(self, fake: torch.Tensor, real: torch.Tensor) -> tp.Tuple[torch.Tensor, torch.Tensor]:
|
116 |
+
"""Return the loss for the generator, i.e. trying to fool the adversary,
|
117 |
+
and feature matching loss if provided.
|
118 |
+
"""
|
119 |
+
adv = torch.tensor(0., device=fake.device)
|
120 |
+
feat = torch.tensor(0., device=fake.device)
|
121 |
+
with flashy.utils.readonly(self.adversary):
|
122 |
+
all_logits_fake_is_fake, all_fmap_fake = self.get_adversary_pred(fake)
|
123 |
+
all_logits_real_is_fake, all_fmap_real = self.get_adversary_pred(real)
|
124 |
+
n_sub_adversaries = len(all_logits_fake_is_fake)
|
125 |
+
for logit_fake_is_fake in all_logits_fake_is_fake:
|
126 |
+
adv += self.loss(logit_fake_is_fake)
|
127 |
+
if self.loss_feat:
|
128 |
+
for fmap_fake, fmap_real in zip(all_fmap_fake, all_fmap_real):
|
129 |
+
feat += self.loss_feat(fmap_fake, fmap_real)
|
130 |
+
|
131 |
+
if self.normalize:
|
132 |
+
adv /= n_sub_adversaries
|
133 |
+
feat /= n_sub_adversaries
|
134 |
+
|
135 |
+
return adv, feat
|
136 |
+
|
137 |
+
|
138 |
+
def get_adv_criterion(loss_type: str) -> tp.Callable:
|
139 |
+
assert loss_type in ADVERSARIAL_LOSSES
|
140 |
+
if loss_type == 'mse':
|
141 |
+
return mse_loss
|
142 |
+
elif loss_type == 'hinge':
|
143 |
+
return hinge_loss
|
144 |
+
elif loss_type == 'hinge2':
|
145 |
+
return hinge2_loss
|
146 |
+
raise ValueError('Unsupported loss')
|
147 |
+
|
148 |
+
|
149 |
+
def get_fake_criterion(loss_type: str) -> tp.Callable:
|
150 |
+
assert loss_type in ADVERSARIAL_LOSSES
|
151 |
+
if loss_type == 'mse':
|
152 |
+
return mse_fake_loss
|
153 |
+
elif loss_type in ['hinge', 'hinge2']:
|
154 |
+
return hinge_fake_loss
|
155 |
+
raise ValueError('Unsupported loss')
|
156 |
+
|
157 |
+
|
158 |
+
def get_real_criterion(loss_type: str) -> tp.Callable:
|
159 |
+
assert loss_type in ADVERSARIAL_LOSSES
|
160 |
+
if loss_type == 'mse':
|
161 |
+
return mse_real_loss
|
162 |
+
elif loss_type in ['hinge', 'hinge2']:
|
163 |
+
return hinge_real_loss
|
164 |
+
raise ValueError('Unsupported loss')
|
165 |
+
|
166 |
+
|
167 |
+
def mse_real_loss(x: torch.Tensor) -> torch.Tensor:
|
168 |
+
return F.mse_loss(x, torch.tensor(1., device=x.device).expand_as(x))
|
169 |
+
|
170 |
+
|
171 |
+
def mse_fake_loss(x: torch.Tensor) -> torch.Tensor:
|
172 |
+
return F.mse_loss(x, torch.tensor(0., device=x.device).expand_as(x))
|
173 |
+
|
174 |
+
|
175 |
+
def hinge_real_loss(x: torch.Tensor) -> torch.Tensor:
|
176 |
+
return -torch.mean(torch.min(x - 1, torch.tensor(0., device=x.device).expand_as(x)))
|
177 |
+
|
178 |
+
|
179 |
+
def hinge_fake_loss(x: torch.Tensor) -> torch.Tensor:
|
180 |
+
return -torch.mean(torch.min(-x - 1, torch.tensor(0., device=x.device).expand_as(x)))
|
181 |
+
|
182 |
+
|
183 |
+
def mse_loss(x: torch.Tensor) -> torch.Tensor:
|
184 |
+
if x.numel() == 0:
|
185 |
+
return torch.tensor([0.0], device=x.device)
|
186 |
+
return F.mse_loss(x, torch.tensor(1., device=x.device).expand_as(x))
|
187 |
+
|
188 |
+
|
189 |
+
def hinge_loss(x: torch.Tensor) -> torch.Tensor:
|
190 |
+
if x.numel() == 0:
|
191 |
+
return torch.tensor([0.0], device=x.device)
|
192 |
+
return -x.mean()
|
193 |
+
|
194 |
+
|
195 |
+
def hinge2_loss(x: torch.Tensor) -> torch.Tensor:
|
196 |
+
if x.numel() == 0:
|
197 |
+
return torch.tensor([0.0])
|
198 |
+
return -torch.mean(torch.min(x - 1, torch.tensor(0., device=x.device).expand_as(x)))
|
199 |
+
|
200 |
+
|
201 |
+
class FeatureMatchingLoss(nn.Module):
|
202 |
+
"""Feature matching loss for adversarial training.
|
203 |
+
|
204 |
+
Args:
|
205 |
+
loss (nn.Module): Loss to use for feature matching (default=torch.nn.L1).
|
206 |
+
normalize (bool): Whether to normalize the loss.
|
207 |
+
by number of feature maps.
|
208 |
+
"""
|
209 |
+
def __init__(self, loss: nn.Module = torch.nn.L1Loss(), normalize: bool = True):
|
210 |
+
super().__init__()
|
211 |
+
self.loss = loss
|
212 |
+
self.normalize = normalize
|
213 |
+
|
214 |
+
def forward(self, fmap_fake: tp.List[torch.Tensor], fmap_real: tp.List[torch.Tensor]) -> torch.Tensor:
|
215 |
+
assert len(fmap_fake) == len(fmap_real) and len(fmap_fake) > 0
|
216 |
+
feat_loss = torch.tensor(0., device=fmap_fake[0].device)
|
217 |
+
feat_scale = torch.tensor(0., device=fmap_fake[0].device)
|
218 |
+
n_fmaps = 0
|
219 |
+
for (feat_fake, feat_real) in zip(fmap_fake, fmap_real):
|
220 |
+
assert feat_fake.shape == feat_real.shape
|
221 |
+
n_fmaps += 1
|
222 |
+
feat_loss += self.loss(feat_fake, feat_real)
|
223 |
+
feat_scale += torch.mean(torch.abs(feat_real))
|
224 |
+
|
225 |
+
if self.normalize:
|
226 |
+
feat_loss /= n_fmaps
|
227 |
+
|
228 |
+
return feat_loss
|
audiocraft/audiocraft/data/__init__.py
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
+
# All rights reserved.
|
3 |
+
#
|
4 |
+
# This source code is licensed under the license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
6 |
+
"""Audio loading and writing support. Datasets for raw audio
|
7 |
+
or also including some metadata."""
|
8 |
+
|
9 |
+
# flake8: noqa
|
10 |
+
from . import audio, audio_dataset, info_audio_dataset, music_dataset, sound_dataset, btc_chords
|
audiocraft/audiocraft/data/__pycache__/__init__.cpython-311.pyc
ADDED
Binary file (493 Bytes). View file
|
|
audiocraft/audiocraft/data/__pycache__/audio.cpython-311.pyc
ADDED
Binary file (14.9 kB). View file
|
|
audiocraft/audiocraft/data/__pycache__/audio_dataset.cpython-311.pyc
ADDED
Binary file (36.7 kB). View file
|
|
audiocraft/audiocraft/data/__pycache__/audio_utils.cpython-311.pyc
ADDED
Binary file (21.4 kB). View file
|
|
audiocraft/audiocraft/data/__pycache__/btc_chords.cpython-311.pyc
ADDED
Binary file (23.4 kB). View file
|
|
audiocraft/audiocraft/data/__pycache__/chords.cpython-311.pyc
ADDED
Binary file (23.4 kB). View file
|
|
audiocraft/audiocraft/data/__pycache__/info_audio_dataset.cpython-311.pyc
ADDED
Binary file (7.63 kB). View file
|
|
audiocraft/audiocraft/data/__pycache__/music_dataset.cpython-311.pyc
ADDED
Binary file (21.8 kB). View file
|
|
audiocraft/audiocraft/data/__pycache__/sound_dataset.cpython-311.pyc
ADDED
Binary file (18.8 kB). View file
|
|
audiocraft/audiocraft/data/__pycache__/zip.cpython-311.pyc
ADDED
Binary file (3.68 kB). View file
|
|
audiocraft/audiocraft/data/audio.py
ADDED
@@ -0,0 +1,257 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
+
# All rights reserved.
|
3 |
+
#
|
4 |
+
# This source code is licensed under the license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
6 |
+
|
7 |
+
"""
|
8 |
+
Audio IO methods are defined in this module (info, read, write),
|
9 |
+
We rely on av library for faster read when possible, otherwise on torchaudio.
|
10 |
+
"""
|
11 |
+
|
12 |
+
from dataclasses import dataclass
|
13 |
+
from pathlib import Path
|
14 |
+
import logging
|
15 |
+
import typing as tp
|
16 |
+
|
17 |
+
import numpy as np
|
18 |
+
import soundfile
|
19 |
+
import torch
|
20 |
+
from torch.nn import functional as F
|
21 |
+
import torchaudio as ta
|
22 |
+
|
23 |
+
import av
|
24 |
+
|
25 |
+
from .audio_utils import f32_pcm, i16_pcm, normalize_audio
|
26 |
+
|
27 |
+
|
28 |
+
_av_initialized = False
|
29 |
+
|
30 |
+
|
31 |
+
def _init_av():
|
32 |
+
global _av_initialized
|
33 |
+
if _av_initialized:
|
34 |
+
return
|
35 |
+
logger = logging.getLogger('libav.mp3')
|
36 |
+
logger.setLevel(logging.ERROR)
|
37 |
+
_av_initialized = True
|
38 |
+
|
39 |
+
|
40 |
+
@dataclass(frozen=True)
|
41 |
+
class AudioFileInfo:
|
42 |
+
sample_rate: int
|
43 |
+
duration: float
|
44 |
+
channels: int
|
45 |
+
|
46 |
+
|
47 |
+
def _av_info(filepath: tp.Union[str, Path]) -> AudioFileInfo:
|
48 |
+
_init_av()
|
49 |
+
with av.open(str(filepath)) as af:
|
50 |
+
stream = af.streams.audio[0]
|
51 |
+
sample_rate = stream.codec_context.sample_rate
|
52 |
+
duration = float(stream.duration * stream.time_base)
|
53 |
+
channels = stream.channels
|
54 |
+
return AudioFileInfo(sample_rate, duration, channels)
|
55 |
+
|
56 |
+
|
57 |
+
def _soundfile_info(filepath: tp.Union[str, Path]) -> AudioFileInfo:
|
58 |
+
info = soundfile.info(filepath)
|
59 |
+
return AudioFileInfo(info.samplerate, info.duration, info.channels)
|
60 |
+
|
61 |
+
|
62 |
+
def audio_info(filepath: tp.Union[str, Path]) -> AudioFileInfo:
|
63 |
+
# torchaudio no longer returns useful duration informations for some formats like mp3s.
|
64 |
+
filepath = Path(filepath)
|
65 |
+
if filepath.suffix in ['.flac', '.ogg']: # TODO: Validate .ogg can be safely read with av_info
|
66 |
+
# ffmpeg has some weird issue with flac.
|
67 |
+
return _soundfile_info(filepath)
|
68 |
+
else:
|
69 |
+
return _av_info(filepath)
|
70 |
+
|
71 |
+
|
72 |
+
def _av_read(filepath: tp.Union[str, Path], seek_time: float = 0, duration: float = -1.) -> tp.Tuple[torch.Tensor, int]:
|
73 |
+
"""FFMPEG-based audio file reading using PyAV bindings.
|
74 |
+
Soundfile cannot read mp3 and av_read is more efficient than torchaudio.
|
75 |
+
|
76 |
+
Args:
|
77 |
+
filepath (str or Path): Path to audio file to read.
|
78 |
+
seek_time (float): Time at which to start reading in the file.
|
79 |
+
duration (float): Duration to read from the file. If set to -1, the whole file is read.
|
80 |
+
Returns:
|
81 |
+
tuple of torch.Tensor, int: Tuple containing audio data and sample rate
|
82 |
+
"""
|
83 |
+
_init_av()
|
84 |
+
with av.open(str(filepath)) as af:
|
85 |
+
stream = af.streams.audio[0]
|
86 |
+
sr = stream.codec_context.sample_rate
|
87 |
+
num_frames = int(sr * duration) if duration >= 0 else -1
|
88 |
+
frame_offset = int(sr * seek_time)
|
89 |
+
# we need a small negative offset otherwise we get some edge artifact
|
90 |
+
# from the mp3 decoder.
|
91 |
+
af.seek(int(max(0, (seek_time - 0.1)) / stream.time_base), stream=stream)
|
92 |
+
frames = []
|
93 |
+
length = 0
|
94 |
+
for frame in af.decode(streams=stream.index):
|
95 |
+
current_offset = int(frame.rate * frame.pts * frame.time_base)
|
96 |
+
strip = max(0, frame_offset - current_offset)
|
97 |
+
buf = torch.from_numpy(frame.to_ndarray())
|
98 |
+
if buf.shape[0] != stream.channels:
|
99 |
+
buf = buf.view(-1, stream.channels).t()
|
100 |
+
buf = buf[:, strip:]
|
101 |
+
frames.append(buf)
|
102 |
+
length += buf.shape[1]
|
103 |
+
if num_frames > 0 and length >= num_frames:
|
104 |
+
break
|
105 |
+
assert frames
|
106 |
+
# If the above assert fails, it is likely because we seeked past the end of file point,
|
107 |
+
# in which case ffmpeg returns a single frame with only zeros, and a weird timestamp.
|
108 |
+
# This will need proper debugging, in due time.
|
109 |
+
wav = torch.cat(frames, dim=1)
|
110 |
+
assert wav.shape[0] == stream.channels
|
111 |
+
if num_frames > 0:
|
112 |
+
wav = wav[:, :num_frames]
|
113 |
+
return f32_pcm(wav), sr
|
114 |
+
|
115 |
+
|
116 |
+
def audio_read(filepath: tp.Union[str, Path], seek_time: float = 0.,
|
117 |
+
duration: float = -1., pad: bool = False) -> tp.Tuple[torch.Tensor, int]:
|
118 |
+
"""Read audio by picking the most appropriate backend tool based on the audio format.
|
119 |
+
|
120 |
+
Args:
|
121 |
+
filepath (str or Path): Path to audio file to read.
|
122 |
+
seek_time (float): Time at which to start reading in the file.
|
123 |
+
duration (float): Duration to read from the file. If set to -1, the whole file is read.
|
124 |
+
pad (bool): Pad output audio if not reaching expected duration.
|
125 |
+
Returns:
|
126 |
+
tuple of torch.Tensor, int: Tuple containing audio data and sample rate.
|
127 |
+
"""
|
128 |
+
fp = Path(filepath)
|
129 |
+
if fp.suffix in ['.flac', '.ogg']: # TODO: check if we can safely use av_read for .ogg
|
130 |
+
# There is some bug with ffmpeg and reading flac
|
131 |
+
info = _soundfile_info(filepath)
|
132 |
+
frames = -1 if duration <= 0 else int(duration * info.sample_rate)
|
133 |
+
frame_offset = int(seek_time * info.sample_rate)
|
134 |
+
wav, sr = soundfile.read(filepath, start=frame_offset, frames=frames, dtype=np.float32)
|
135 |
+
assert info.sample_rate == sr, f"Mismatch of sample rates {info.sample_rate} {sr}"
|
136 |
+
wav = torch.from_numpy(wav).t().contiguous()
|
137 |
+
if len(wav.shape) == 1:
|
138 |
+
wav = torch.unsqueeze(wav, 0)
|
139 |
+
elif (
|
140 |
+
fp.suffix in ['.wav', '.mp3'] and fp.suffix[1:] in ta.utils.sox_utils.list_read_formats()
|
141 |
+
and duration <= 0 and seek_time == 0
|
142 |
+
):
|
143 |
+
# Torchaudio is faster if we load an entire file at once.
|
144 |
+
wav, sr = ta.load(fp)
|
145 |
+
else:
|
146 |
+
wav, sr = _av_read(filepath, seek_time, duration)
|
147 |
+
if pad and duration > 0:
|
148 |
+
expected_frames = int(duration * sr)
|
149 |
+
wav = F.pad(wav, (0, expected_frames - wav.shape[-1]))
|
150 |
+
return wav, sr
|
151 |
+
|
152 |
+
|
153 |
+
def audio_write(stem_name: tp.Union[str, Path],
|
154 |
+
wav: torch.Tensor, sample_rate: int,
|
155 |
+
format: str = 'wav', mp3_rate: int = 320, normalize: bool = True,
|
156 |
+
strategy: str = 'peak', peak_clip_headroom_db: float = 1,
|
157 |
+
rms_headroom_db: float = 18, loudness_headroom_db: float = 14,
|
158 |
+
loudness_compressor: bool = False,
|
159 |
+
log_clipping: bool = True, make_parent_dir: bool = True,
|
160 |
+
add_suffix: bool = True) -> Path:
|
161 |
+
"""Convenience function for saving audio to disk. Returns the filename the audio was written to.
|
162 |
+
|
163 |
+
Args:
|
164 |
+
stem_name (str or Path): Filename without extension which will be added automatically.
|
165 |
+
format (str): Either "wav" or "mp3".
|
166 |
+
mp3_rate (int): kbps when using mp3s.
|
167 |
+
normalize (bool): if `True` (default), normalizes according to the prescribed
|
168 |
+
strategy (see after). If `False`, the strategy is only used in case clipping
|
169 |
+
would happen.
|
170 |
+
strategy (str): Can be either 'clip', 'peak', or 'rms'. Default is 'peak',
|
171 |
+
i.e. audio is normalized by its largest value. RMS normalizes by root-mean-square
|
172 |
+
with extra headroom to avoid clipping. 'clip' just clips.
|
173 |
+
peak_clip_headroom_db (float): Headroom in dB when doing 'peak' or 'clip' strategy.
|
174 |
+
rms_headroom_db (float): Headroom in dB when doing 'rms' strategy. This must be much larger
|
175 |
+
than the `peak_clip` one to avoid further clipping.
|
176 |
+
loudness_headroom_db (float): Target loudness for loudness normalization.
|
177 |
+
loudness_compressor (bool): Uses tanh for soft clipping when strategy is 'loudness'.
|
178 |
+
when strategy is 'loudness' log_clipping (bool): If True, basic logging on stderr when clipping still
|
179 |
+
occurs despite strategy (only for 'rms').
|
180 |
+
make_parent_dir (bool): Make parent directory if it doesn't exist.
|
181 |
+
Returns:
|
182 |
+
Path: Path of the saved audio.
|
183 |
+
"""
|
184 |
+
assert wav.dtype.is_floating_point, "wav is not floating point"
|
185 |
+
if wav.dim() == 1:
|
186 |
+
wav = wav[None]
|
187 |
+
elif wav.dim() > 2:
|
188 |
+
raise ValueError("Input wav should be at most 2 dimension.")
|
189 |
+
assert wav.isfinite().all()
|
190 |
+
wav = normalize_audio(wav, normalize, strategy, peak_clip_headroom_db,
|
191 |
+
rms_headroom_db, loudness_headroom_db, loudness_compressor,
|
192 |
+
log_clipping=log_clipping, sample_rate=sample_rate,
|
193 |
+
stem_name=str(stem_name))
|
194 |
+
kwargs: dict = {}
|
195 |
+
if format == 'mp3':
|
196 |
+
suffix = '.mp3'
|
197 |
+
kwargs.update({"compression": mp3_rate})
|
198 |
+
elif format == 'wav':
|
199 |
+
wav = i16_pcm(wav)
|
200 |
+
suffix = '.wav'
|
201 |
+
kwargs.update({"encoding": "PCM_S", "bits_per_sample": 16})
|
202 |
+
else:
|
203 |
+
raise RuntimeError(f"Invalid format {format}. Only wav or mp3 are supported.")
|
204 |
+
if not add_suffix:
|
205 |
+
suffix = ''
|
206 |
+
path = Path(str(stem_name) + suffix)
|
207 |
+
if make_parent_dir:
|
208 |
+
path.parent.mkdir(exist_ok=True, parents=True)
|
209 |
+
try:
|
210 |
+
ta.save(path, wav, sample_rate, **kwargs)
|
211 |
+
except Exception:
|
212 |
+
if path.exists():
|
213 |
+
# we do not want to leave half written files around.
|
214 |
+
path.unlink()
|
215 |
+
raise
|
216 |
+
return path
|
217 |
+
|
218 |
+
def audio_postproc(wav: torch.Tensor, sample_rate: int, normalize: bool = True,
|
219 |
+
strategy: str = 'peak', peak_clip_headroom_db: float = 1,
|
220 |
+
rms_headroom_db: float = 18, loudness_headroom_db: float = 14,
|
221 |
+
loudness_compressor: bool = False, log_clipping: bool = True) -> Path:
|
222 |
+
"""Convenience function for saving audio to disk. Returns the filename the audio was written to.
|
223 |
+
|
224 |
+
Args:
|
225 |
+
wav (torch.Tensor): Audio data to save.
|
226 |
+
sample_rate (int): Sample rate of audio data.
|
227 |
+
format (str): Either "wav" or "mp3".
|
228 |
+
mp3_rate (int): kbps when using mp3s.
|
229 |
+
normalize (bool): if `True` (default), normalizes according to the prescribed
|
230 |
+
strategy (see after). If `False`, the strategy is only used in case clipping
|
231 |
+
would happen.
|
232 |
+
strategy (str): Can be either 'clip', 'peak', or 'rms'. Default is 'peak',
|
233 |
+
i.e. audio is normalized by its largest value. RMS normalizes by root-mean-square
|
234 |
+
with extra headroom to avoid clipping. 'clip' just clips.
|
235 |
+
peak_clip_headroom_db (float): Headroom in dB when doing 'peak' or 'clip' strategy.
|
236 |
+
rms_headroom_db (float): Headroom in dB when doing 'rms' strategy. This must be much larger
|
237 |
+
than the `peak_clip` one to avoid further clipping.
|
238 |
+
loudness_headroom_db (float): Target loudness for loudness normalization.
|
239 |
+
loudness_compressor (bool): Uses tanh for soft clipping when strategy is 'loudness'.
|
240 |
+
when strategy is 'loudness' log_clipping (bool): If True, basic logging on stderr when clipping still
|
241 |
+
occurs despite strategy (only for 'rms').
|
242 |
+
make_parent_dir (bool): Make parent directory if it doesn't exist.
|
243 |
+
Returns:
|
244 |
+
Path: Path of the saved audio.
|
245 |
+
"""
|
246 |
+
assert wav.dtype.is_floating_point, "wav is not floating point"
|
247 |
+
if wav.dim() == 1:
|
248 |
+
wav = wav[None]
|
249 |
+
elif wav.dim() > 2:
|
250 |
+
raise ValueError("Input wav should be at most 2 dimension.")
|
251 |
+
assert wav.isfinite().all()
|
252 |
+
wav = normalize_audio(wav, normalize, strategy, peak_clip_headroom_db,
|
253 |
+
rms_headroom_db, loudness_headroom_db, loudness_compressor,
|
254 |
+
log_clipping=log_clipping, sample_rate=sample_rate,
|
255 |
+
stem_name=None)
|
256 |
+
|
257 |
+
return wav
|
audiocraft/audiocraft/data/audio_dataset.py
ADDED
@@ -0,0 +1,614 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
+
# All rights reserved.
|
3 |
+
#
|
4 |
+
# This source code is licensed under the license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
6 |
+
"""AudioDataset support. In order to handle a larger number of files
|
7 |
+
without having to scan again the folders, we precompute some metadata
|
8 |
+
(filename, sample rate, duration), and use that to efficiently sample audio segments.
|
9 |
+
"""
|
10 |
+
import argparse
|
11 |
+
import copy
|
12 |
+
from concurrent.futures import ThreadPoolExecutor, Future
|
13 |
+
from dataclasses import dataclass, fields
|
14 |
+
from contextlib import ExitStack
|
15 |
+
from functools import lru_cache
|
16 |
+
import gzip
|
17 |
+
import json
|
18 |
+
import logging
|
19 |
+
import os
|
20 |
+
from pathlib import Path
|
21 |
+
import random
|
22 |
+
import sys
|
23 |
+
import typing as tp
|
24 |
+
|
25 |
+
import torch
|
26 |
+
import torch.nn.functional as F
|
27 |
+
|
28 |
+
from .audio import audio_read, audio_info
|
29 |
+
from .audio_utils import convert_audio
|
30 |
+
from .zip import PathInZip
|
31 |
+
|
32 |
+
try:
|
33 |
+
import dora
|
34 |
+
except ImportError:
|
35 |
+
dora = None # type: ignore
|
36 |
+
|
37 |
+
|
38 |
+
@dataclass(order=True)
|
39 |
+
class BaseInfo:
|
40 |
+
|
41 |
+
@classmethod
|
42 |
+
def _dict2fields(cls, dictionary: dict):
|
43 |
+
return {
|
44 |
+
field.name: dictionary[field.name]
|
45 |
+
for field in fields(cls) if field.name in dictionary
|
46 |
+
}
|
47 |
+
|
48 |
+
@classmethod
|
49 |
+
def from_dict(cls, dictionary: dict):
|
50 |
+
_dictionary = cls._dict2fields(dictionary)
|
51 |
+
return cls(**_dictionary)
|
52 |
+
|
53 |
+
def to_dict(self):
|
54 |
+
return {
|
55 |
+
field.name: self.__getattribute__(field.name)
|
56 |
+
for field in fields(self)
|
57 |
+
}
|
58 |
+
|
59 |
+
|
60 |
+
@dataclass(order=True)
|
61 |
+
class AudioMeta(BaseInfo):
|
62 |
+
path: str
|
63 |
+
duration: float
|
64 |
+
sample_rate: int
|
65 |
+
bpm: float
|
66 |
+
# meter: int
|
67 |
+
amplitude: tp.Optional[float] = None
|
68 |
+
weight: tp.Optional[float] = None
|
69 |
+
phr_start: tp.List[tp.Optional[float]] = None
|
70 |
+
# info_path is used to load additional information about the audio file that is stored in zip files.
|
71 |
+
info_path: tp.Optional[PathInZip] = None
|
72 |
+
|
73 |
+
@classmethod
|
74 |
+
def from_dict(cls, dictionary: dict):
|
75 |
+
base = cls._dict2fields(dictionary)
|
76 |
+
if 'info_path' in base and base['info_path'] is not None:
|
77 |
+
base['info_path'] = PathInZip(base['info_path'])
|
78 |
+
return cls(**base)
|
79 |
+
|
80 |
+
def to_dict(self):
|
81 |
+
d = super().to_dict()
|
82 |
+
if d['info_path'] is not None:
|
83 |
+
d['info_path'] = str(d['info_path'])
|
84 |
+
return d
|
85 |
+
|
86 |
+
|
87 |
+
@dataclass(order=True)
|
88 |
+
class SegmentInfo(BaseInfo):
|
89 |
+
meta: AudioMeta
|
90 |
+
seek_time: float
|
91 |
+
# The following values are given once the audio is processed, e.g.
|
92 |
+
# at the target sample rate and target number of channels.
|
93 |
+
n_frames: int # actual number of frames without padding
|
94 |
+
total_frames: int # total number of frames, padding included
|
95 |
+
sample_rate: int # actual sample rate
|
96 |
+
channels: int # number of audio channels.
|
97 |
+
|
98 |
+
|
99 |
+
DEFAULT_EXTS = ['.wav', '.mp3', '.flac', '.ogg', '.m4a']
|
100 |
+
|
101 |
+
logger = logging.getLogger(__name__)
|
102 |
+
|
103 |
+
|
104 |
+
def _get_audio_meta(file_path: str, minimal: bool = True) -> AudioMeta:
|
105 |
+
"""AudioMeta from a path to an audio file.
|
106 |
+
|
107 |
+
Args:
|
108 |
+
file_path (str): Resolved path of valid audio file.
|
109 |
+
minimal (bool): Whether to only load the minimal set of metadata (takes longer if not).
|
110 |
+
Returns:
|
111 |
+
AudioMeta: Audio file path and its metadata.
|
112 |
+
"""
|
113 |
+
info = audio_info(file_path)
|
114 |
+
amplitude: tp.Optional[float] = None
|
115 |
+
if not minimal:
|
116 |
+
wav, sr = audio_read(file_path)
|
117 |
+
amplitude = wav.abs().max().item()
|
118 |
+
|
119 |
+
# load json info
|
120 |
+
json_file = file_path.replace('.wav', '.json')
|
121 |
+
with open(json_file ,'r') as f:
|
122 |
+
json_str = f.read()
|
123 |
+
info_json = json.loads(json_str)
|
124 |
+
|
125 |
+
if "phr_start" not in info_json.keys():
|
126 |
+
info_json["phr_start"] = None
|
127 |
+
|
128 |
+
# return AudioMeta(file_path, info.duration, info.sample_rate, info_json["bpm"], info_json["meter"], amplitude, None, info_json["phr_start"])
|
129 |
+
return AudioMeta(file_path, info.duration, info.sample_rate, info_json["bpm"], amplitude, None, info_json["phr_start"])
|
130 |
+
|
131 |
+
def _resolve_audio_meta(m: AudioMeta, fast: bool = True) -> AudioMeta:
|
132 |
+
"""If Dora is available as a dependency, try to resolve potential relative paths
|
133 |
+
in list of AudioMeta. This method is expected to be used when loading meta from file.
|
134 |
+
|
135 |
+
Args:
|
136 |
+
m (AudioMeta): Audio meta to resolve.
|
137 |
+
fast (bool): If True, uses a really fast check for determining if a file
|
138 |
+
is already absolute or not. Only valid on Linux/Mac.
|
139 |
+
Returns:
|
140 |
+
AudioMeta: Audio meta with resolved path.
|
141 |
+
"""
|
142 |
+
def is_abs(m):
|
143 |
+
if fast:
|
144 |
+
return str(m)[0] == '/'
|
145 |
+
else:
|
146 |
+
os.path.isabs(str(m))
|
147 |
+
|
148 |
+
if not dora:
|
149 |
+
return m
|
150 |
+
|
151 |
+
if not is_abs(m.path):
|
152 |
+
m.path = dora.git_save.to_absolute_path(m.path)
|
153 |
+
if m.info_path is not None and not is_abs(m.info_path.zip_path):
|
154 |
+
m.info_path.zip_path = dora.git_save.to_absolute_path(m.path)
|
155 |
+
return m
|
156 |
+
|
157 |
+
|
158 |
+
def find_audio_files(path: tp.Union[Path, str],
|
159 |
+
exts: tp.List[str] = DEFAULT_EXTS,
|
160 |
+
resolve: bool = True,
|
161 |
+
minimal: bool = True,
|
162 |
+
progress: bool = False,
|
163 |
+
workers: int = 0) -> tp.List[AudioMeta]:
|
164 |
+
"""Build a list of AudioMeta from a given path,
|
165 |
+
collecting relevant audio files and fetching meta info.
|
166 |
+
|
167 |
+
Args:
|
168 |
+
path (str or Path): Path to folder containing audio files.
|
169 |
+
exts (list of str): List of file extensions to consider for audio files.
|
170 |
+
minimal (bool): Whether to only load the minimal set of metadata (takes longer if not).
|
171 |
+
progress (bool): Whether to log progress on audio files collection.
|
172 |
+
workers (int): number of parallel workers, if 0, use only the current thread.
|
173 |
+
Returns:
|
174 |
+
list of AudioMeta: List of audio file path and its metadata.
|
175 |
+
"""
|
176 |
+
audio_files = []
|
177 |
+
futures: tp.List[Future] = []
|
178 |
+
pool: tp.Optional[ThreadPoolExecutor] = None
|
179 |
+
with ExitStack() as stack:
|
180 |
+
if workers > 0:
|
181 |
+
pool = ThreadPoolExecutor(workers)
|
182 |
+
stack.enter_context(pool)
|
183 |
+
|
184 |
+
if progress:
|
185 |
+
print("Finding audio files...")
|
186 |
+
for root, folders, files in os.walk(path, followlinks=True):
|
187 |
+
for file in files:
|
188 |
+
full_path = Path(root) / file
|
189 |
+
if full_path.suffix.lower() in exts:
|
190 |
+
audio_files.append(full_path)
|
191 |
+
if pool is not None:
|
192 |
+
futures.append(pool.submit(_get_audio_meta, str(audio_files[-1]), minimal))
|
193 |
+
if progress:
|
194 |
+
print(format(len(audio_files), " 8d"), end='\r', file=sys.stderr)
|
195 |
+
|
196 |
+
if progress:
|
197 |
+
print("Getting audio metadata...")
|
198 |
+
meta: tp.List[AudioMeta] = []
|
199 |
+
for idx, file_path in enumerate(audio_files):
|
200 |
+
try:
|
201 |
+
if pool is None:
|
202 |
+
m = _get_audio_meta(str(file_path), minimal)
|
203 |
+
else:
|
204 |
+
m = futures[idx].result()
|
205 |
+
if resolve:
|
206 |
+
m = _resolve_audio_meta(m)
|
207 |
+
except Exception as err:
|
208 |
+
print("Error with", str(file_path), err, file=sys.stderr)
|
209 |
+
continue
|
210 |
+
meta.append(m)
|
211 |
+
if progress:
|
212 |
+
print(format((1 + idx) / len(audio_files), " 3.1%"), end='\r', file=sys.stderr)
|
213 |
+
meta.sort()
|
214 |
+
return meta
|
215 |
+
|
216 |
+
|
217 |
+
def load_audio_meta(path: tp.Union[str, Path],
|
218 |
+
resolve: bool = True, fast: bool = True) -> tp.List[AudioMeta]:
|
219 |
+
"""Load list of AudioMeta from an optionally compressed json file.
|
220 |
+
|
221 |
+
Args:
|
222 |
+
path (str or Path): Path to JSON file.
|
223 |
+
resolve (bool): Whether to resolve the path from AudioMeta (default=True).
|
224 |
+
fast (bool): activates some tricks to make things faster.
|
225 |
+
Returns:
|
226 |
+
list of AudioMeta: List of audio file path and its total duration.
|
227 |
+
"""
|
228 |
+
open_fn = gzip.open if str(path).lower().endswith('.gz') else open
|
229 |
+
with open_fn(path, 'rb') as fp: # type: ignore
|
230 |
+
lines = fp.readlines()
|
231 |
+
meta = []
|
232 |
+
for line in lines:
|
233 |
+
d = json.loads(line)
|
234 |
+
m = AudioMeta.from_dict(d)
|
235 |
+
if resolve:
|
236 |
+
m = _resolve_audio_meta(m, fast=fast)
|
237 |
+
meta.append(m)
|
238 |
+
return meta
|
239 |
+
|
240 |
+
|
241 |
+
def save_audio_meta(path: tp.Union[str, Path], meta: tp.List[AudioMeta]):
|
242 |
+
"""Save the audio metadata to the file pointer as json.
|
243 |
+
|
244 |
+
Args:
|
245 |
+
path (str or Path): Path to JSON file.
|
246 |
+
metadata (list of BaseAudioMeta): List of audio meta to save.
|
247 |
+
"""
|
248 |
+
Path(path).parent.mkdir(exist_ok=True, parents=True)
|
249 |
+
open_fn = gzip.open if str(path).lower().endswith('.gz') else open
|
250 |
+
with open_fn(path, 'wb') as fp: # type: ignore
|
251 |
+
for m in meta:
|
252 |
+
json_str = json.dumps(m.to_dict()) + '\n'
|
253 |
+
json_bytes = json_str.encode('utf-8')
|
254 |
+
fp.write(json_bytes)
|
255 |
+
|
256 |
+
|
257 |
+
class AudioDataset:
|
258 |
+
"""Base audio dataset.
|
259 |
+
|
260 |
+
The dataset takes a list of AudioMeta and create a dataset composed of segments of audio
|
261 |
+
and potentially additional information, by creating random segments from the list of audio
|
262 |
+
files referenced in the metadata and applying minimal data pre-processing such as resampling,
|
263 |
+
mixing of channels, padding, etc.
|
264 |
+
|
265 |
+
If no segment_duration value is provided, the AudioDataset will return the full wav for each
|
266 |
+
audio file. Otherwise, it will randomly sample audio files and create a segment of the specified
|
267 |
+
duration, applying padding if required.
|
268 |
+
|
269 |
+
By default, only the torch Tensor corresponding to the waveform is returned. Setting return_info=True
|
270 |
+
allows to return a tuple containing the torch Tensor and additional metadata on the segment and the
|
271 |
+
original audio meta.
|
272 |
+
|
273 |
+
Note that you can call `start_epoch(epoch)` in order to get
|
274 |
+
a deterministic "randomization" for `shuffle=True`.
|
275 |
+
For a given epoch and dataset index, this will always return the same extract.
|
276 |
+
You can get back some diversity by setting the `shuffle_seed` param.
|
277 |
+
|
278 |
+
Args:
|
279 |
+
meta (list of AudioMeta): List of audio files metadata.
|
280 |
+
segment_duration (float, optional): Optional segment duration of audio to load.
|
281 |
+
If not specified, the dataset will load the full audio segment from the file.
|
282 |
+
shuffle (bool): Set to `True` to have the data reshuffled at every epoch.
|
283 |
+
sample_rate (int): Target sample rate of the loaded audio samples.
|
284 |
+
channels (int): Target number of channels of the loaded audio samples.
|
285 |
+
sample_on_duration (bool): Set to `True` to sample segments with probability
|
286 |
+
dependent on audio file duration. This is only used if `segment_duration` is provided.
|
287 |
+
sample_on_weight (bool): Set to `True` to sample segments using the `weight` entry of
|
288 |
+
`AudioMeta`. If `sample_on_duration` is also True, the actual weight will be the product
|
289 |
+
of the file duration and file weight. This is only used if `segment_duration` is provided.
|
290 |
+
min_segment_ratio (float): Minimum segment ratio to use when the audio file
|
291 |
+
is shorter than the desired segment.
|
292 |
+
max_read_retry (int): Maximum number of retries to sample an audio segment from the dataset.
|
293 |
+
return_info (bool): Whether to return the wav only or return wav along with segment info and metadata.
|
294 |
+
min_audio_duration (float, optional): Minimum audio file duration, in seconds, if provided
|
295 |
+
audio shorter than this will be filtered out.
|
296 |
+
max_audio_duration (float, optional): Maximal audio file duration in seconds, if provided
|
297 |
+
audio longer than this will be filtered out.
|
298 |
+
shuffle_seed (int): can be used to further randomize
|
299 |
+
load_wav (bool): if False, skip loading the wav but returns a tensor of 0
|
300 |
+
with the expected segment_duration (which must be provided if load_wav is False).
|
301 |
+
permutation_on_files (bool): only if `sample_on_weight` and `sample_on_duration`
|
302 |
+
are False. Will ensure a permutation on files when going through the dataset.
|
303 |
+
In that case the epoch number must be provided in order for the model
|
304 |
+
to continue the permutation across epochs. In that case, it is assumed
|
305 |
+
that `num_samples = total_batch_size * num_updates_per_epoch`, with
|
306 |
+
`total_batch_size` the overall batch size accounting for all gpus.
|
307 |
+
"""
|
308 |
+
def __init__(self,
|
309 |
+
meta: tp.List[AudioMeta],
|
310 |
+
segment_duration: tp.Optional[float] = None,
|
311 |
+
shuffle: bool = True,
|
312 |
+
num_samples: int = 10_000,
|
313 |
+
sample_rate: int = 48_000,
|
314 |
+
channels: int = 2,
|
315 |
+
pad: bool = True,
|
316 |
+
sample_on_duration: bool = True,
|
317 |
+
sample_on_weight: bool = True,
|
318 |
+
min_segment_ratio: float = 1,
|
319 |
+
max_read_retry: int = 10,
|
320 |
+
return_info: bool = False,
|
321 |
+
min_audio_duration: tp.Optional[float] = None,
|
322 |
+
max_audio_duration: tp.Optional[float] = None,
|
323 |
+
shuffle_seed: int = 0,
|
324 |
+
load_wav: bool = True,
|
325 |
+
permutation_on_files: bool = False,
|
326 |
+
):
|
327 |
+
assert len(meta) > 0, "No audio meta provided to AudioDataset. Please check loading of audio meta."
|
328 |
+
assert segment_duration is None or segment_duration > 0
|
329 |
+
assert segment_duration is None or min_segment_ratio >= 0
|
330 |
+
self.segment_duration = segment_duration
|
331 |
+
self.min_segment_ratio = min_segment_ratio
|
332 |
+
self.max_audio_duration = max_audio_duration
|
333 |
+
self.min_audio_duration = min_audio_duration
|
334 |
+
if self.min_audio_duration is not None and self.max_audio_duration is not None:
|
335 |
+
assert self.min_audio_duration <= self.max_audio_duration
|
336 |
+
self.meta: tp.List[AudioMeta] = self._filter_duration(meta)
|
337 |
+
assert len(self.meta) # Fail fast if all data has been filtered.
|
338 |
+
self.total_duration = sum(d.duration for d in self.meta)
|
339 |
+
|
340 |
+
if segment_duration is None:
|
341 |
+
num_samples = len(self.meta)
|
342 |
+
self.num_samples = num_samples
|
343 |
+
self.shuffle = shuffle
|
344 |
+
self.sample_rate = sample_rate
|
345 |
+
self.channels = channels
|
346 |
+
self.pad = pad
|
347 |
+
self.sample_on_weight = sample_on_weight
|
348 |
+
self.sample_on_duration = sample_on_duration
|
349 |
+
self.sampling_probabilities = self._get_sampling_probabilities()
|
350 |
+
self.max_read_retry = max_read_retry
|
351 |
+
self.return_info = return_info
|
352 |
+
self.shuffle_seed = shuffle_seed
|
353 |
+
self.current_epoch: tp.Optional[int] = None
|
354 |
+
self.load_wav = load_wav
|
355 |
+
if not load_wav:
|
356 |
+
assert segment_duration is not None
|
357 |
+
self.permutation_on_files = permutation_on_files
|
358 |
+
if permutation_on_files:
|
359 |
+
assert not self.sample_on_duration
|
360 |
+
assert not self.sample_on_weight
|
361 |
+
assert self.shuffle
|
362 |
+
|
363 |
+
def start_epoch(self, epoch: int):
|
364 |
+
self.current_epoch = epoch
|
365 |
+
|
366 |
+
def __len__(self):
|
367 |
+
return self.num_samples
|
368 |
+
|
369 |
+
def _get_sampling_probabilities(self, normalized: bool = True):
|
370 |
+
"""Return the sampling probabilities for each file inside `self.meta`."""
|
371 |
+
scores: tp.List[float] = []
|
372 |
+
for file_meta in self.meta:
|
373 |
+
score = 1.
|
374 |
+
if self.sample_on_weight and file_meta.weight is not None:
|
375 |
+
score *= file_meta.weight
|
376 |
+
if self.sample_on_duration:
|
377 |
+
score *= file_meta.duration
|
378 |
+
scores.append(score)
|
379 |
+
probabilities = torch.tensor(scores)
|
380 |
+
if normalized:
|
381 |
+
probabilities /= probabilities.sum()
|
382 |
+
return probabilities
|
383 |
+
|
384 |
+
@staticmethod
|
385 |
+
@lru_cache(16)
|
386 |
+
def _get_file_permutation(num_files: int, permutation_index: int, base_seed: int):
|
387 |
+
# Used to keep the most recent files permutation in memory implicitely.
|
388 |
+
# will work unless someone is using a lot of Datasets in parallel.
|
389 |
+
rng = torch.Generator()
|
390 |
+
rng.manual_seed(base_seed + permutation_index)
|
391 |
+
return torch.randperm(num_files, generator=rng)
|
392 |
+
|
393 |
+
def sample_file(self, index: int, rng: torch.Generator) -> AudioMeta:
|
394 |
+
"""Sample a given file from `self.meta`. Can be overridden in subclasses.
|
395 |
+
This is only called if `segment_duration` is not None.
|
396 |
+
|
397 |
+
You must use the provided random number generator `rng` for reproducibility.
|
398 |
+
You can further make use of the index accessed.
|
399 |
+
"""
|
400 |
+
if self.permutation_on_files:
|
401 |
+
assert self.current_epoch is not None
|
402 |
+
total_index = self.current_epoch * len(self) + index
|
403 |
+
permutation_index = total_index // len(self.meta)
|
404 |
+
relative_index = total_index % len(self.meta)
|
405 |
+
permutation = AudioDataset._get_file_permutation(
|
406 |
+
len(self.meta), permutation_index, self.shuffle_seed)
|
407 |
+
file_index = permutation[relative_index]
|
408 |
+
return self.meta[file_index]
|
409 |
+
|
410 |
+
if not self.sample_on_weight and not self.sample_on_duration:
|
411 |
+
file_index = int(torch.randint(len(self.sampling_probabilities), (1,), generator=rng).item())
|
412 |
+
else:
|
413 |
+
file_index = int(torch.multinomial(self.sampling_probabilities, 1, generator=rng).item())
|
414 |
+
|
415 |
+
return self.meta[file_index]
|
416 |
+
|
417 |
+
def _audio_read(self, path: str, seek_time: float = 0, duration: float = -1):
|
418 |
+
# Override this method in subclass if needed.
|
419 |
+
if self.load_wav:
|
420 |
+
return audio_read(path, seek_time, duration, pad=False)
|
421 |
+
else:
|
422 |
+
assert self.segment_duration is not None
|
423 |
+
n_frames = int(self.sample_rate * self.segment_duration)
|
424 |
+
return torch.zeros(self.channels, n_frames), self.sample_rate
|
425 |
+
|
426 |
+
def __getitem__(self, index: int) -> tp.Union[torch.Tensor, tp.Tuple[torch.Tensor, SegmentInfo]]:
|
427 |
+
if self.segment_duration is None:
|
428 |
+
file_meta = self.meta[index]
|
429 |
+
out, sr = audio_read(file_meta.path)
|
430 |
+
out = convert_audio(out, sr, self.sample_rate, self.channels)
|
431 |
+
n_frames = out.shape[-1]
|
432 |
+
segment_info = SegmentInfo(file_meta, seek_time=0., n_frames=n_frames, total_frames=n_frames,
|
433 |
+
sample_rate=self.sample_rate, channels=out.shape[0])
|
434 |
+
else:
|
435 |
+
rng = torch.Generator()
|
436 |
+
if self.shuffle:
|
437 |
+
# We use index, plus extra randomness, either totally random if we don't know the epoch.
|
438 |
+
# otherwise we make use of the epoch number and optional shuffle_seed.
|
439 |
+
if self.current_epoch is None:
|
440 |
+
rng.manual_seed(index + self.num_samples * random.randint(0, 2**24))
|
441 |
+
else:
|
442 |
+
rng.manual_seed(index + self.num_samples * (self.current_epoch + self.shuffle_seed))
|
443 |
+
else:
|
444 |
+
# We only use index
|
445 |
+
rng.manual_seed(index)
|
446 |
+
|
447 |
+
for retry in range(self.max_read_retry):
|
448 |
+
file_meta = self.sample_file(index, rng)
|
449 |
+
# We add some variance in the file position even if audio file is smaller than segment
|
450 |
+
# without ending up with empty segments
|
451 |
+
|
452 |
+
# sample with phrase
|
453 |
+
if file_meta.phr_start is not None:
|
454 |
+
# max_seek = max(0, len(file_meta.phr_start[:-1]))
|
455 |
+
max_seek = max(0, len([start for start in file_meta.phr_start if start + self.segment_duration <= file_meta.duration])) # sample with time
|
456 |
+
seek_time = file_meta.phr_start[int(torch.rand(1, generator=rng).item() * max_seek)] # choose from phrase
|
457 |
+
|
458 |
+
else:
|
459 |
+
max_seek = max(0, file_meta.duration - self.segment_duration * self.min_segment_ratio)
|
460 |
+
seek_time = torch.rand(1, generator=rng).item() * max_seek # can be change to choose phrase start
|
461 |
+
|
462 |
+
if file_meta.duration == self.segment_duration:
|
463 |
+
seek_time = 0
|
464 |
+
|
465 |
+
# phr_dur = 60./file_meta.bpm * (file_meta.meter * 4.) # if meter=4 then 16 beats per phrase
|
466 |
+
try:
|
467 |
+
out, sr = audio_read(file_meta.path, seek_time, self.segment_duration, pad=False)
|
468 |
+
# out, sr = audio_read(file_meta.path, seek_time, phr_dur, pad=False) # use phrase trunk as input
|
469 |
+
out = convert_audio(out, sr, self.sample_rate, self.channels)
|
470 |
+
n_frames = out.shape[-1]
|
471 |
+
target_frames = int(self.segment_duration * self.sample_rate)
|
472 |
+
if self.pad:
|
473 |
+
out = F.pad(out, (0, target_frames - n_frames))
|
474 |
+
segment_info = SegmentInfo(file_meta, seek_time, n_frames=n_frames, total_frames=target_frames,
|
475 |
+
sample_rate=self.sample_rate, channels=out.shape[0])
|
476 |
+
except Exception as exc:
|
477 |
+
logger.warning("Error opening file %s: %r", file_meta.path, exc)
|
478 |
+
if retry == self.max_read_retry - 1:
|
479 |
+
raise
|
480 |
+
else:
|
481 |
+
break
|
482 |
+
|
483 |
+
if self.return_info:
|
484 |
+
# Returns the wav and additional information on the wave segment
|
485 |
+
return out, segment_info
|
486 |
+
else:
|
487 |
+
return out
|
488 |
+
|
489 |
+
def collater(self, samples):
|
490 |
+
"""The collater function has to be provided to the dataloader
|
491 |
+
if AudioDataset has return_info=True in order to properly collate
|
492 |
+
the samples of a batch.
|
493 |
+
"""
|
494 |
+
if self.segment_duration is None and len(samples) > 1:
|
495 |
+
assert self.pad, "Must allow padding when batching examples of different durations."
|
496 |
+
|
497 |
+
# In this case the audio reaching the collater is of variable length as segment_duration=None.
|
498 |
+
to_pad = self.segment_duration is None and self.pad
|
499 |
+
if to_pad:
|
500 |
+
max_len = max([wav.shape[-1] for wav, _ in samples])
|
501 |
+
|
502 |
+
def _pad_wav(wav):
|
503 |
+
return F.pad(wav, (0, max_len - wav.shape[-1]))
|
504 |
+
|
505 |
+
if self.return_info:
|
506 |
+
if len(samples) > 0:
|
507 |
+
assert len(samples[0]) == 2
|
508 |
+
assert isinstance(samples[0][0], torch.Tensor)
|
509 |
+
assert isinstance(samples[0][1], SegmentInfo)
|
510 |
+
|
511 |
+
wavs = [wav for wav, _ in samples]
|
512 |
+
segment_infos = [copy.deepcopy(info) for _, info in samples]
|
513 |
+
|
514 |
+
if to_pad:
|
515 |
+
# Each wav could be of a different duration as they are not segmented.
|
516 |
+
for i in range(len(samples)):
|
517 |
+
# Determines the total length of the signal with padding, so we update here as we pad.
|
518 |
+
segment_infos[i].total_frames = max_len
|
519 |
+
wavs[i] = _pad_wav(wavs[i])
|
520 |
+
|
521 |
+
wav = torch.stack(wavs)
|
522 |
+
return wav, segment_infos
|
523 |
+
else:
|
524 |
+
assert isinstance(samples[0], torch.Tensor)
|
525 |
+
if to_pad:
|
526 |
+
samples = [_pad_wav(s) for s in samples]
|
527 |
+
return torch.stack(samples)
|
528 |
+
|
529 |
+
def _filter_duration(self, meta: tp.List[AudioMeta]) -> tp.List[AudioMeta]:
|
530 |
+
"""Filters out audio files with audio durations that will not allow to sample examples from them."""
|
531 |
+
orig_len = len(meta)
|
532 |
+
|
533 |
+
# Filter data that is too short.
|
534 |
+
if self.min_audio_duration is not None:
|
535 |
+
meta = [m for m in meta if m.duration >= self.min_audio_duration]
|
536 |
+
|
537 |
+
# Filter data that is too long.
|
538 |
+
if self.max_audio_duration is not None:
|
539 |
+
meta = [m for m in meta if m.duration <= self.max_audio_duration]
|
540 |
+
|
541 |
+
filtered_len = len(meta)
|
542 |
+
removed_percentage = 100*(1-float(filtered_len)/orig_len)
|
543 |
+
msg = 'Removed %.2f percent of the data because it was too short or too long.' % removed_percentage
|
544 |
+
if removed_percentage < 10:
|
545 |
+
logging.debug(msg)
|
546 |
+
else:
|
547 |
+
logging.warning(msg)
|
548 |
+
return meta
|
549 |
+
|
550 |
+
@classmethod
|
551 |
+
def from_meta(cls, root: tp.Union[str, Path], **kwargs):
|
552 |
+
"""Instantiate AudioDataset from a path to a directory containing a manifest as a jsonl file.
|
553 |
+
|
554 |
+
Args:
|
555 |
+
root (str or Path): Path to root folder containing audio files.
|
556 |
+
kwargs: Additional keyword arguments for the AudioDataset.
|
557 |
+
"""
|
558 |
+
root = Path(root)
|
559 |
+
if root.is_dir():
|
560 |
+
if (root / 'data.jsonl').exists():
|
561 |
+
root = root / 'data.jsonl'
|
562 |
+
elif (root / 'data.jsonl.gz').exists():
|
563 |
+
root = root / 'data.jsonl.gz'
|
564 |
+
else:
|
565 |
+
raise ValueError("Don't know where to read metadata from in the dir. "
|
566 |
+
"Expecting either a data.jsonl or data.jsonl.gz file but none found.")
|
567 |
+
meta = load_audio_meta(root)
|
568 |
+
return cls(meta, **kwargs)
|
569 |
+
|
570 |
+
@classmethod
|
571 |
+
def from_path(cls, root: tp.Union[str, Path], minimal_meta: bool = True,
|
572 |
+
exts: tp.List[str] = DEFAULT_EXTS, **kwargs):
|
573 |
+
"""Instantiate AudioDataset from a path containing (possibly nested) audio files.
|
574 |
+
|
575 |
+
Args:
|
576 |
+
root (str or Path): Path to root folder containing audio files.
|
577 |
+
minimal_meta (bool): Whether to only load minimal metadata or not.
|
578 |
+
exts (list of str): Extensions for audio files.
|
579 |
+
kwargs: Additional keyword arguments for the AudioDataset.
|
580 |
+
"""
|
581 |
+
root = Path(root)
|
582 |
+
if root.is_file():
|
583 |
+
meta = load_audio_meta(root, resolve=True)
|
584 |
+
else:
|
585 |
+
meta = find_audio_files(root, exts, minimal=minimal_meta, resolve=True)
|
586 |
+
return cls(meta, **kwargs)
|
587 |
+
|
588 |
+
|
589 |
+
def main():
|
590 |
+
logging.basicConfig(stream=sys.stderr, level=logging.INFO)
|
591 |
+
parser = argparse.ArgumentParser(
|
592 |
+
prog='audio_dataset',
|
593 |
+
description='Generate .jsonl files by scanning a folder.')
|
594 |
+
parser.add_argument('root', help='Root folder with all the audio files')
|
595 |
+
parser.add_argument('output_meta_file',
|
596 |
+
help='Output file to store the metadata, ')
|
597 |
+
parser.add_argument('--complete',
|
598 |
+
action='store_false', dest='minimal', default=True,
|
599 |
+
help='Retrieve all metadata, even the one that are expansive '
|
600 |
+
'to compute (e.g. normalization).')
|
601 |
+
parser.add_argument('--resolve',
|
602 |
+
action='store_true', default=False,
|
603 |
+
help='Resolve the paths to be absolute and with no symlinks.')
|
604 |
+
parser.add_argument('--workers',
|
605 |
+
default=10, type=int,
|
606 |
+
help='Number of workers.')
|
607 |
+
args = parser.parse_args()
|
608 |
+
meta = find_audio_files(args.root, DEFAULT_EXTS, progress=True,
|
609 |
+
resolve=args.resolve, minimal=args.minimal, workers=args.workers)
|
610 |
+
save_audio_meta(args.output_meta_file, meta)
|
611 |
+
|
612 |
+
|
613 |
+
if __name__ == '__main__':
|
614 |
+
main()
|
audiocraft/audiocraft/data/audio_utils.py
ADDED
@@ -0,0 +1,385 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
+
# All rights reserved.
|
3 |
+
#
|
4 |
+
# This source code is licensed under the license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
6 |
+
"""Various utilities for audio convertion (pcm format, sample rate and channels),
|
7 |
+
and volume normalization."""
|
8 |
+
import sys
|
9 |
+
import typing as tp
|
10 |
+
|
11 |
+
import julius
|
12 |
+
import torch
|
13 |
+
import torchaudio
|
14 |
+
import numpy as np
|
15 |
+
|
16 |
+
from .chords import Chords
|
17 |
+
chords = Chords() # initiate object
|
18 |
+
|
19 |
+
|
20 |
+
def convert_audio_channels(wav: torch.Tensor, channels: int = 2) -> torch.Tensor:
|
21 |
+
"""Convert audio to the given number of channels.
|
22 |
+
|
23 |
+
Args:
|
24 |
+
wav (torch.Tensor): Audio wave of shape [B, C, T].
|
25 |
+
channels (int): Expected number of channels as output.
|
26 |
+
Returns:
|
27 |
+
torch.Tensor: Downmixed or unchanged audio wave [B, C, T].
|
28 |
+
"""
|
29 |
+
*shape, src_channels, length = wav.shape
|
30 |
+
if src_channels == channels:
|
31 |
+
pass
|
32 |
+
elif channels == 1:
|
33 |
+
# Case 1:
|
34 |
+
# The caller asked 1-channel audio, and the stream has multiple
|
35 |
+
# channels, downmix all channels.
|
36 |
+
wav = wav.mean(dim=-2, keepdim=True)
|
37 |
+
elif src_channels == 1:
|
38 |
+
# Case 2:
|
39 |
+
# The caller asked for multiple channels, but the input file has
|
40 |
+
# a single channel, replicate the audio over all channels.
|
41 |
+
wav = wav.expand(*shape, channels, length)
|
42 |
+
elif src_channels >= channels:
|
43 |
+
# Case 3:
|
44 |
+
# The caller asked for multiple channels, and the input file has
|
45 |
+
# more channels than requested. In that case return the first channels.
|
46 |
+
wav = wav[..., :channels, :]
|
47 |
+
else:
|
48 |
+
# Case 4: What is a reasonable choice here?
|
49 |
+
raise ValueError('The audio file has less channels than requested but is not mono.')
|
50 |
+
return wav
|
51 |
+
|
52 |
+
|
53 |
+
def convert_audio(wav: torch.Tensor, from_rate: float,
|
54 |
+
to_rate: float, to_channels: int) -> torch.Tensor:
|
55 |
+
"""Convert audio to new sample rate and number of audio channels."""
|
56 |
+
wav = julius.resample_frac(wav, int(from_rate), int(to_rate))
|
57 |
+
wav = convert_audio_channels(wav, to_channels)
|
58 |
+
return wav
|
59 |
+
|
60 |
+
|
61 |
+
def normalize_loudness(wav: torch.Tensor, sample_rate: int, loudness_headroom_db: float = 14,
|
62 |
+
loudness_compressor: bool = False, energy_floor: float = 2e-3):
|
63 |
+
"""Normalize an input signal to a user loudness in dB LKFS.
|
64 |
+
Audio loudness is defined according to the ITU-R BS.1770-4 recommendation.
|
65 |
+
|
66 |
+
Args:
|
67 |
+
wav (torch.Tensor): Input multichannel audio data.
|
68 |
+
sample_rate (int): Sample rate.
|
69 |
+
loudness_headroom_db (float): Target loudness of the output in dB LUFS.
|
70 |
+
loudness_compressor (bool): Uses tanh for soft clipping.
|
71 |
+
energy_floor (float): anything below that RMS level will not be rescaled.
|
72 |
+
Returns:
|
73 |
+
torch.Tensor: Loudness normalized output data.
|
74 |
+
"""
|
75 |
+
energy = wav.pow(2).mean().sqrt().item()
|
76 |
+
if energy < energy_floor:
|
77 |
+
return wav
|
78 |
+
transform = torchaudio.transforms.Loudness(sample_rate)
|
79 |
+
input_loudness_db = transform(wav).item()
|
80 |
+
# calculate the gain needed to scale to the desired loudness level
|
81 |
+
delta_loudness = -loudness_headroom_db - input_loudness_db
|
82 |
+
gain = 10.0 ** (delta_loudness / 20.0)
|
83 |
+
output = gain * wav
|
84 |
+
if loudness_compressor:
|
85 |
+
output = torch.tanh(output)
|
86 |
+
assert output.isfinite().all(), (input_loudness_db, wav.pow(2).mean().sqrt())
|
87 |
+
return output
|
88 |
+
|
89 |
+
|
90 |
+
def _clip_wav(wav: torch.Tensor, log_clipping: bool = False, stem_name: tp.Optional[str] = None) -> None:
|
91 |
+
"""Utility function to clip the audio with logging if specified."""
|
92 |
+
max_scale = wav.abs().max()
|
93 |
+
if log_clipping and max_scale > 1:
|
94 |
+
clamp_prob = (wav.abs() > 1).float().mean().item()
|
95 |
+
print(f"CLIPPING {stem_name or ''} happening with proba (a bit of clipping is okay):",
|
96 |
+
clamp_prob, "maximum scale: ", max_scale.item(), file=sys.stderr)
|
97 |
+
wav.clamp_(-1, 1)
|
98 |
+
|
99 |
+
|
100 |
+
def normalize_audio(wav: torch.Tensor, normalize: bool = True,
|
101 |
+
strategy: str = 'peak', peak_clip_headroom_db: float = 1,
|
102 |
+
rms_headroom_db: float = 18, loudness_headroom_db: float = 14,
|
103 |
+
loudness_compressor: bool = False, log_clipping: bool = False,
|
104 |
+
sample_rate: tp.Optional[int] = None,
|
105 |
+
stem_name: tp.Optional[str] = None) -> torch.Tensor:
|
106 |
+
"""Normalize the audio according to the prescribed strategy (see after).
|
107 |
+
|
108 |
+
Args:
|
109 |
+
wav (torch.Tensor): Audio data.
|
110 |
+
normalize (bool): if `True` (default), normalizes according to the prescribed
|
111 |
+
strategy (see after). If `False`, the strategy is only used in case clipping
|
112 |
+
would happen.
|
113 |
+
strategy (str): Can be either 'clip', 'peak', or 'rms'. Default is 'peak',
|
114 |
+
i.e. audio is normalized by its largest value. RMS normalizes by root-mean-square
|
115 |
+
with extra headroom to avoid clipping. 'clip' just clips.
|
116 |
+
peak_clip_headroom_db (float): Headroom in dB when doing 'peak' or 'clip' strategy.
|
117 |
+
rms_headroom_db (float): Headroom in dB when doing 'rms' strategy. This must be much larger
|
118 |
+
than the `peak_clip` one to avoid further clipping.
|
119 |
+
loudness_headroom_db (float): Target loudness for loudness normalization.
|
120 |
+
loudness_compressor (bool): If True, uses tanh based soft clipping.
|
121 |
+
log_clipping (bool): If True, basic logging on stderr when clipping still
|
122 |
+
occurs despite strategy (only for 'rms').
|
123 |
+
sample_rate (int): Sample rate for the audio data (required for loudness).
|
124 |
+
stem_name (str, optional): Stem name for clipping logging.
|
125 |
+
Returns:
|
126 |
+
torch.Tensor: Normalized audio.
|
127 |
+
"""
|
128 |
+
scale_peak = 10 ** (-peak_clip_headroom_db / 20)
|
129 |
+
scale_rms = 10 ** (-rms_headroom_db / 20)
|
130 |
+
if strategy == 'peak':
|
131 |
+
rescaling = (scale_peak / wav.abs().max())
|
132 |
+
if normalize or rescaling < 1:
|
133 |
+
wav = wav * rescaling
|
134 |
+
elif strategy == 'clip':
|
135 |
+
wav = wav.clamp(-scale_peak, scale_peak)
|
136 |
+
elif strategy == 'rms':
|
137 |
+
mono = wav.mean(dim=0)
|
138 |
+
rescaling = scale_rms / mono.pow(2).mean().sqrt()
|
139 |
+
if normalize or rescaling < 1:
|
140 |
+
wav = wav * rescaling
|
141 |
+
_clip_wav(wav, log_clipping=log_clipping, stem_name=stem_name)
|
142 |
+
elif strategy == 'loudness':
|
143 |
+
assert sample_rate is not None, "Loudness normalization requires sample rate."
|
144 |
+
wav = normalize_loudness(wav, sample_rate, loudness_headroom_db, loudness_compressor)
|
145 |
+
_clip_wav(wav, log_clipping=log_clipping, stem_name=stem_name)
|
146 |
+
else:
|
147 |
+
assert wav.abs().max() < 1
|
148 |
+
assert strategy == '' or strategy == 'none', f"Unexpected strategy: '{strategy}'"
|
149 |
+
return wav
|
150 |
+
|
151 |
+
|
152 |
+
def f32_pcm(wav: torch.Tensor) -> torch.Tensor:
|
153 |
+
"""Convert audio to float 32 bits PCM format.
|
154 |
+
"""
|
155 |
+
if wav.dtype.is_floating_point:
|
156 |
+
return wav
|
157 |
+
elif wav.dtype == torch.int16:
|
158 |
+
return wav.float() / 2**15
|
159 |
+
elif wav.dtype == torch.int32:
|
160 |
+
return wav.float() / 2**31
|
161 |
+
raise ValueError(f"Unsupported wav dtype: {wav.dtype}")
|
162 |
+
|
163 |
+
|
164 |
+
def i16_pcm(wav: torch.Tensor) -> torch.Tensor:
|
165 |
+
"""Convert audio to int 16 bits PCM format.
|
166 |
+
|
167 |
+
..Warning:: There exist many formula for doing this conversion. None are perfect
|
168 |
+
due to the asymmetry of the int16 range. One either have possible clipping, DC offset,
|
169 |
+
or inconsistencies with f32_pcm. If the given wav doesn't have enough headroom,
|
170 |
+
it is possible that `i16_pcm(f32_pcm)) != Identity`.
|
171 |
+
"""
|
172 |
+
if wav.dtype.is_floating_point:
|
173 |
+
assert wav.abs().max() <= 1
|
174 |
+
candidate = (wav * 2 ** 15).round()
|
175 |
+
if candidate.max() >= 2 ** 15: # clipping would occur
|
176 |
+
candidate = (wav * (2 ** 15 - 1)).round()
|
177 |
+
return candidate.short()
|
178 |
+
else:
|
179 |
+
assert wav.dtype == torch.int16
|
180 |
+
return wav
|
181 |
+
|
182 |
+
def convert_txtchord2chroma_orig(text_chords, bpms, meters, gen_sec):
|
183 |
+
chromas = []
|
184 |
+
# total_len = int(gen_sec * 44100 / 512)
|
185 |
+
total_len = int(gen_sec * 32000 / 640)
|
186 |
+
for chord, bpm, meter in zip(text_chords, bpms, meters):
|
187 |
+
phr_len = int(60. / bpm * (meter * 4) * 32000 / 640)
|
188 |
+
# phr_len = int(60. / bpm * (meter * 4) * 44100 / 2048)
|
189 |
+
chroma = torch.zeros([total_len, 12])
|
190 |
+
count = 0
|
191 |
+
offset = 0
|
192 |
+
|
193 |
+
stext = chord.split(" ")
|
194 |
+
timebin = phr_len // 4 # frames per bar
|
195 |
+
while count < total_len:
|
196 |
+
for tokens in stext:
|
197 |
+
if count >= total_len:
|
198 |
+
break
|
199 |
+
stoken = tokens.split(',')
|
200 |
+
for token in stoken:
|
201 |
+
off_timebin = timebin + offset
|
202 |
+
rounded_timebin = round(off_timebin)
|
203 |
+
offset = off_timebin - rounded_timebin
|
204 |
+
offset = offset/len(stoken)
|
205 |
+
add_step = rounded_timebin//len(stoken)
|
206 |
+
mhot = chords.chord(token)
|
207 |
+
rolled = np.roll(mhot[2], mhot[0])
|
208 |
+
for i in range(count, count + add_step):
|
209 |
+
if count >= total_len:
|
210 |
+
break
|
211 |
+
chroma[i] = torch.Tensor(rolled)
|
212 |
+
count += 1
|
213 |
+
chromas.append(chroma)
|
214 |
+
chroma = torch.stack(chromas)
|
215 |
+
return chroma
|
216 |
+
|
217 |
+
def convert_txtchord2chroma(chord, bpm, meter, gen_sec):
|
218 |
+
total_len = int(gen_sec * 32000 / 640)
|
219 |
+
|
220 |
+
phr_len = int(60. / bpm * (meter * 4) * 32000 / 640)
|
221 |
+
# phr_len = int(60. / bpm * (meter * 4) * 44100 / 2048)
|
222 |
+
chroma = torch.zeros([total_len, 12])
|
223 |
+
count = 0
|
224 |
+
offset = 0
|
225 |
+
|
226 |
+
stext = chord.split(" ")
|
227 |
+
timebin = phr_len // 4 # frames per bar
|
228 |
+
while count < total_len:
|
229 |
+
for tokens in stext:
|
230 |
+
if count >= total_len:
|
231 |
+
break
|
232 |
+
stoken = tokens.split(',')
|
233 |
+
for token in stoken:
|
234 |
+
off_timebin = timebin + offset
|
235 |
+
rounded_timebin = round(off_timebin)
|
236 |
+
offset = off_timebin - rounded_timebin
|
237 |
+
offset = offset/len(stoken)
|
238 |
+
add_step = rounded_timebin//len(stoken)
|
239 |
+
mhot = chords.chord(token)
|
240 |
+
rolled = np.roll(mhot[2], mhot[0])
|
241 |
+
for i in range(count, count + add_step):
|
242 |
+
if count >= total_len:
|
243 |
+
break
|
244 |
+
chroma[i] = torch.Tensor(rolled)
|
245 |
+
count += 1
|
246 |
+
return chroma
|
247 |
+
|
248 |
+
|
249 |
+
|
250 |
+
def convert_txtchord2chroma_24(chord, bpm, meter, gen_sec):
|
251 |
+
total_len = int(gen_sec * 32000 / 640)
|
252 |
+
|
253 |
+
phr_len = int(60. / bpm * (meter * 4) * 32000 / 640)
|
254 |
+
# phr_len = int(60. / bpm * (meter * 4) * 44100 / 2048)
|
255 |
+
chroma = torch.zeros([total_len, 24])
|
256 |
+
count = 0
|
257 |
+
offset = 0
|
258 |
+
|
259 |
+
stext = chord.split(" ")
|
260 |
+
timebin = phr_len // 4 # frames per bar
|
261 |
+
while count < total_len:
|
262 |
+
for tokens in stext:
|
263 |
+
if count >= total_len:
|
264 |
+
break
|
265 |
+
stoken = tokens.split(',')
|
266 |
+
for token in stoken:
|
267 |
+
off_timebin = timebin + offset
|
268 |
+
rounded_timebin = round(off_timebin)
|
269 |
+
offset = off_timebin - rounded_timebin
|
270 |
+
offset = offset/len(stoken)
|
271 |
+
add_step = rounded_timebin//len(stoken)
|
272 |
+
|
273 |
+
root, bass, ivs_vec, _ = chords.chord(token)
|
274 |
+
root_vec = torch.zeros(12)
|
275 |
+
root_vec[root] = 1
|
276 |
+
final_vec = np.concatenate([root_vec, ivs_vec]) # [C]
|
277 |
+
for i in range(count, count + add_step):
|
278 |
+
if count >= total_len:
|
279 |
+
break
|
280 |
+
chroma[i] = torch.Tensor(final_vec)
|
281 |
+
count += 1
|
282 |
+
return chroma
|
283 |
+
|
284 |
+
def get_chroma_chord_from_lab(chord_path, gen_sec):
|
285 |
+
total_len = int(gen_sec * 32000 / 640)
|
286 |
+
feat_hz = 32000/640
|
287 |
+
intervals = []
|
288 |
+
labels = []
|
289 |
+
feat_chord = np.zeros((12, total_len)) # root| ivs
|
290 |
+
with open(chord_path, 'r') as f:
|
291 |
+
for line in f.readlines():
|
292 |
+
splits = line.split()
|
293 |
+
if len(splits) == 3:
|
294 |
+
st_sec, ed_sec, ctag = splits
|
295 |
+
st_sec = float(st_sec)
|
296 |
+
ed_sec = float(ed_sec)
|
297 |
+
|
298 |
+
st_frame = int(st_sec*feat_hz)
|
299 |
+
ed_frame = int(ed_sec*feat_hz)
|
300 |
+
|
301 |
+
mhot = chords.chord(ctag)
|
302 |
+
final_vec = np.roll(mhot[2], mhot[0])
|
303 |
+
|
304 |
+
final_vec = final_vec[..., None] # [C, T]
|
305 |
+
feat_chord[:, st_frame:ed_frame] = final_vec
|
306 |
+
feat_chord = torch.from_numpy(feat_chord)
|
307 |
+
return feat_chord
|
308 |
+
|
309 |
+
|
310 |
+
def get_chroma_chord_from_text(text_chord, bpm, meter, gen_sec):
|
311 |
+
total_len = int(gen_sec * 32000 / 640)
|
312 |
+
|
313 |
+
phr_len = int(60. / bpm * (meter * 4) * 32000 / 640)
|
314 |
+
chroma = np.zeros([12, total_len])
|
315 |
+
count = 0
|
316 |
+
offset = 0
|
317 |
+
|
318 |
+
stext = chord.split(" ")
|
319 |
+
timebin = phr_len // 4 # frames per bar
|
320 |
+
while count < total_len:
|
321 |
+
for tokens in stext:
|
322 |
+
if count >= total_len:
|
323 |
+
break
|
324 |
+
stoken = tokens.split(',')
|
325 |
+
for token in stoken:
|
326 |
+
off_timebin = timebin + offset
|
327 |
+
rounded_timebin = round(off_timebin)
|
328 |
+
offset = off_timebin - rounded_timebin
|
329 |
+
offset = offset/len(stoken)
|
330 |
+
add_step = rounded_timebin//len(stoken)
|
331 |
+
mhot = chords.chord(token)
|
332 |
+
final_vec = np.roll(mhot[2], mhot[0])
|
333 |
+
final_vec = final_vec[..., None] # [C, T]
|
334 |
+
|
335 |
+
for i in range(count, count + add_step):
|
336 |
+
if count >= total_len:
|
337 |
+
break
|
338 |
+
chroma[:, i] = final_vec
|
339 |
+
count += 1
|
340 |
+
feat_chord = torch.from_numpy(feat_chord)
|
341 |
+
return feat_chord
|
342 |
+
|
343 |
+
def get_beat_from_npy(beat_path, gen_sec):
|
344 |
+
total_len = int(gen_sec * 32000 / 640)
|
345 |
+
|
346 |
+
beats_np = np.load(beat_path, allow_pickle=True)
|
347 |
+
feat_beats = np.zeros((2, total_len))
|
348 |
+
meter = int(max(beats_np.T[1]))
|
349 |
+
beat_time = beats_np[:, 0]
|
350 |
+
bar_time = beats_np[np.where(beats_np[:, 1] == 1)[0], 0]
|
351 |
+
|
352 |
+
beat_frame = [int((t)*feat_hz) for t in beat_time if (t >= 0 and t < duration)]
|
353 |
+
bar_frame =[int((t)*feat_hz) for t in bar_time if (t >= 0 and t < duration)]
|
354 |
+
|
355 |
+
feat_beats[0, beat_frame] = 1
|
356 |
+
feat_beats[1, bar_frame] = 1
|
357 |
+
kernel = np.array([0.05, 0.1, 0.3, 0.9, 0.3, 0.1, 0.05])
|
358 |
+
feat_beats[0] = np.convolve(feat_beats[0] , kernel, 'same') # apply soft kernel
|
359 |
+
beat_events = feat_beats[0] + feat_beats[1]
|
360 |
+
beat_events = torch.tensor(beat_events).unsqueeze(0) # [T] -> [1, T]
|
361 |
+
|
362 |
+
bpm = 60 // np.mean([j-i for i, j in zip(beat_time[:-1], beat_time[1:])])
|
363 |
+
return beat_events, bpm, meter
|
364 |
+
|
365 |
+
def get_beat_from_bpm(bpm, meter, gen_sec):
|
366 |
+
total_len = int(gen_sec * 32000 / 640)
|
367 |
+
|
368 |
+
feat_beats = np.zeros((2, total_len))
|
369 |
+
|
370 |
+
beat_time_gap = 60 / bpm
|
371 |
+
beat_gap = 60 / bpm * feat_hz
|
372 |
+
|
373 |
+
beat_time = np.arange(0, duration, beat_time_gap)
|
374 |
+
beat_frame = np.round(np.arange(0, n_frames_feat, beat_gap)).astype(int)
|
375 |
+
if beat_frame[-1] == n_frames_feat:
|
376 |
+
beat_frame = beat_frame[:-1]
|
377 |
+
bar_frame = beat_frame[::meter]
|
378 |
+
|
379 |
+
feat_beats[0, beat_frame] = 1
|
380 |
+
feat_beats[1, bar_frame] = 1
|
381 |
+
kernel = np.array([0.05, 0.1, 0.3, 0.9, 0.3, 0.1, 0.05])
|
382 |
+
feat_beats[0] = np.convolve(feat_beats[0] , kernel, 'same') # apply soft kernel
|
383 |
+
beat_events = feat_beats[0] + feat_beats[1]
|
384 |
+
beat_events = torch.tensor(beat_events).unsqueeze(0) # [T] -> [1, T]
|
385 |
+
return beat_events, beat_time, meter
|
audiocraft/audiocraft/data/btc_chords.py
ADDED
@@ -0,0 +1,524 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# encoding: utf-8
|
2 |
+
"""
|
3 |
+
This module contains chord evaluation functionality.
|
4 |
+
|
5 |
+
It provides the evaluation measures used for the MIREX ACE task, and
|
6 |
+
tries to follow [1]_ and [2]_ as closely as possible.
|
7 |
+
|
8 |
+
Notes
|
9 |
+
-----
|
10 |
+
This implementation tries to follow the references and their implementation
|
11 |
+
(e.g., https://github.com/jpauwels/MusOOEvaluator for [2]_). However, there
|
12 |
+
are some known (and possibly some unknown) differences. If you find one not
|
13 |
+
listed in the following, please file an issue:
|
14 |
+
|
15 |
+
- Detected chord segments are adjusted to fit the length of the annotations.
|
16 |
+
In particular, this means that, if necessary, filler segments of 'no chord'
|
17 |
+
are added at beginnings and ends. This can result in different segmentation
|
18 |
+
scores compared to the original implementation.
|
19 |
+
|
20 |
+
References
|
21 |
+
----------
|
22 |
+
.. [1] Christopher Harte, "Towards Automatic Extraction of Harmony Information
|
23 |
+
from Music Signals." Dissertation,
|
24 |
+
Department for Electronic Engineering, Queen Mary University of London,
|
25 |
+
2010.
|
26 |
+
.. [2] Johan Pauwels and Geoffroy Peeters.
|
27 |
+
"Evaluating Automatically Estimated Chord Sequences."
|
28 |
+
In Proceedings of ICASSP 2013, Vancouver, Canada, 2013.
|
29 |
+
|
30 |
+
"""
|
31 |
+
|
32 |
+
import numpy as np
|
33 |
+
import pandas as pd
|
34 |
+
|
35 |
+
|
36 |
+
CHORD_DTYPE = [('root', np.int_),
|
37 |
+
('bass', np.int_),
|
38 |
+
('intervals', np.int_, (12,)),
|
39 |
+
('is_major',np.bool_)]
|
40 |
+
|
41 |
+
CHORD_ANN_DTYPE = [('start', np.float32),
|
42 |
+
('end', np.float32),
|
43 |
+
('chord', CHORD_DTYPE)]
|
44 |
+
|
45 |
+
NO_CHORD = (-1, -1, np.zeros(12, dtype=np.int_), False)
|
46 |
+
UNKNOWN_CHORD = (-1, -1, np.ones(12, dtype=np.int_) * -1, False)
|
47 |
+
|
48 |
+
PITCH_CLASS = ['C', 'C#', 'D', 'D#', 'E', 'F', 'F#', 'G', 'G#', 'A', 'A#', 'B']
|
49 |
+
|
50 |
+
|
51 |
+
def idx_to_chord(idx):
|
52 |
+
if idx == 24:
|
53 |
+
return "-"
|
54 |
+
elif idx == 25:
|
55 |
+
return u"\u03B5"
|
56 |
+
|
57 |
+
minmaj = idx % 2
|
58 |
+
root = idx // 2
|
59 |
+
|
60 |
+
return PITCH_CLASS[root] + ("M" if minmaj == 0 else "m")
|
61 |
+
|
62 |
+
class Chords:
|
63 |
+
|
64 |
+
def __init__(self):
|
65 |
+
self._shorthands = {
|
66 |
+
'maj': self.interval_list('(1,3,5)'),
|
67 |
+
'min': self.interval_list('(1,b3,5)'),
|
68 |
+
'dim': self.interval_list('(1,b3,b5)'),
|
69 |
+
'aug': self.interval_list('(1,3,#5)'),
|
70 |
+
'maj7': self.interval_list('(1,3,5,7)'),
|
71 |
+
'min7': self.interval_list('(1,b3,5,b7)'),
|
72 |
+
'7': self.interval_list('(1,3,5,b7)'),
|
73 |
+
'6': self.interval_list('(1,6)'), # custom
|
74 |
+
'5': self.interval_list('(1,5)'),
|
75 |
+
'4': self.interval_list('(1,4)'), # custom
|
76 |
+
'1': self.interval_list('(1)'),
|
77 |
+
'dim7': self.interval_list('(1,b3,b5,bb7)'),
|
78 |
+
'hdim7': self.interval_list('(1,b3,b5,b7)'),
|
79 |
+
'minmaj7': self.interval_list('(1,b3,5,7)'),
|
80 |
+
'maj6': self.interval_list('(1,3,5,6)'),
|
81 |
+
'min6': self.interval_list('(1,b3,5,6)'),
|
82 |
+
'9': self.interval_list('(1,3,5,b7,9)'),
|
83 |
+
'maj9': self.interval_list('(1,3,5,7,9)'),
|
84 |
+
'min9': self.interval_list('(1,b3,5,b7,9)'),
|
85 |
+
'add9': self.interval_list('(1,3,5,9)'), # custom
|
86 |
+
'sus2': self.interval_list('(1,2,5)'),
|
87 |
+
'sus4': self.interval_list('(1,4,5)'),
|
88 |
+
'7sus2': self.interval_list('(1,2,5,b7)'), # custom
|
89 |
+
'7sus4': self.interval_list('(1,4,5,b7)'), # custom
|
90 |
+
'11': self.interval_list('(1,3,5,b7,9,11)'),
|
91 |
+
'min11': self.interval_list('(1,b3,5,b7,9,11)'),
|
92 |
+
'13': self.interval_list('(1,3,5,b7,13)'),
|
93 |
+
'maj13': self.interval_list('(1,3,5,7,13)'),
|
94 |
+
'min13': self.interval_list('(1,b3,5,b7,13)')
|
95 |
+
}
|
96 |
+
|
97 |
+
def chords(self, labels):
|
98 |
+
|
99 |
+
"""
|
100 |
+
Transform a list of chord labels into an array of internal numeric
|
101 |
+
representations.
|
102 |
+
|
103 |
+
Parameters
|
104 |
+
----------
|
105 |
+
labels : list
|
106 |
+
List of chord labels (str).
|
107 |
+
|
108 |
+
Returns
|
109 |
+
-------
|
110 |
+
chords : numpy.array
|
111 |
+
Structured array with columns 'root', 'bass', and 'intervals',
|
112 |
+
containing a numeric representation of chords.
|
113 |
+
|
114 |
+
"""
|
115 |
+
crds = np.zeros(len(labels), dtype=CHORD_DTYPE)
|
116 |
+
cache = {}
|
117 |
+
for i, lbl in enumerate(labels):
|
118 |
+
cv = cache.get(lbl, None)
|
119 |
+
if cv is None:
|
120 |
+
cv = self.chord(lbl)
|
121 |
+
cache[lbl] = cv
|
122 |
+
crds[i] = cv
|
123 |
+
|
124 |
+
return crds
|
125 |
+
|
126 |
+
def label_error_modify(self, label):
|
127 |
+
if label == 'Emin/4': label = 'E:min/4'
|
128 |
+
elif label == 'A7/3': label = 'A:7/3'
|
129 |
+
elif label == 'Bb7/3': label = 'Bb:7/3'
|
130 |
+
elif label == 'Bb7/5': label = 'Bb:7/5'
|
131 |
+
elif label.find(':') == -1:
|
132 |
+
if label.find('min') != -1:
|
133 |
+
label = label[:label.find('min')] + ':' + label[label.find('min'):]
|
134 |
+
return label
|
135 |
+
|
136 |
+
def chord(self, label):
|
137 |
+
"""
|
138 |
+
Transform a chord label into the internal numeric represenation of
|
139 |
+
(root, bass, intervals array).
|
140 |
+
|
141 |
+
Parameters
|
142 |
+
----------
|
143 |
+
label : str
|
144 |
+
Chord label.
|
145 |
+
|
146 |
+
Returns
|
147 |
+
-------
|
148 |
+
chord : tuple
|
149 |
+
Numeric representation of the chord: (root, bass, intervals array).
|
150 |
+
|
151 |
+
"""
|
152 |
+
|
153 |
+
|
154 |
+
is_major = False
|
155 |
+
|
156 |
+
if label == 'N':
|
157 |
+
return NO_CHORD
|
158 |
+
if label == 'X':
|
159 |
+
return UNKNOWN_CHORD
|
160 |
+
|
161 |
+
label = self.label_error_modify(label)
|
162 |
+
|
163 |
+
c_idx = label.find(':')
|
164 |
+
s_idx = label.find('/')
|
165 |
+
|
166 |
+
if c_idx == -1:
|
167 |
+
quality_str = 'maj'
|
168 |
+
if s_idx == -1:
|
169 |
+
root_str = label
|
170 |
+
bass_str = ''
|
171 |
+
else:
|
172 |
+
root_str = label[:s_idx]
|
173 |
+
bass_str = label[s_idx + 1:]
|
174 |
+
else:
|
175 |
+
root_str = label[:c_idx]
|
176 |
+
if s_idx == -1:
|
177 |
+
quality_str = label[c_idx + 1:]
|
178 |
+
bass_str = ''
|
179 |
+
else:
|
180 |
+
quality_str = label[c_idx + 1:s_idx]
|
181 |
+
bass_str = label[s_idx + 1:]
|
182 |
+
|
183 |
+
root = self.pitch(root_str)
|
184 |
+
bass = self.interval(bass_str) if bass_str else 0
|
185 |
+
ivs = self.chord_intervals(quality_str)
|
186 |
+
ivs[bass] = 1
|
187 |
+
|
188 |
+
if 'min' in quality_str:
|
189 |
+
is_major = False
|
190 |
+
else:
|
191 |
+
is_major = True
|
192 |
+
|
193 |
+
|
194 |
+
return root, bass, ivs, is_major
|
195 |
+
|
196 |
+
_l = [0, 1, 1, 0, 1, 1, 1]
|
197 |
+
_chroma_id = (np.arange(len(_l) * 2) + 1) + np.array(_l + _l).cumsum() - 1
|
198 |
+
|
199 |
+
def modify(self, base_pitch, modifier):
|
200 |
+
"""
|
201 |
+
Modify a pitch class in integer representation by a given modifier string.
|
202 |
+
|
203 |
+
A modifier string can be any sequence of 'b' (one semitone down)
|
204 |
+
and '#' (one semitone up).
|
205 |
+
|
206 |
+
Parameters
|
207 |
+
----------
|
208 |
+
base_pitch : int
|
209 |
+
Pitch class as integer.
|
210 |
+
modifier : str
|
211 |
+
String of modifiers ('b' or '#').
|
212 |
+
|
213 |
+
Returns
|
214 |
+
-------
|
215 |
+
modified_pitch : int
|
216 |
+
Modified root note.
|
217 |
+
|
218 |
+
"""
|
219 |
+
for m in modifier:
|
220 |
+
if m == 'b':
|
221 |
+
base_pitch -= 1
|
222 |
+
elif m == '#':
|
223 |
+
base_pitch += 1
|
224 |
+
else:
|
225 |
+
raise ValueError('Unknown modifier: {}'.format(m))
|
226 |
+
return base_pitch
|
227 |
+
|
228 |
+
def pitch(self, pitch_str):
|
229 |
+
"""
|
230 |
+
Convert a string representation of a pitch class (consisting of root
|
231 |
+
note and modifiers) to an integer representation.
|
232 |
+
|
233 |
+
Parameters
|
234 |
+
----------
|
235 |
+
pitch_str : str
|
236 |
+
String representation of a pitch class.
|
237 |
+
|
238 |
+
Returns
|
239 |
+
-------
|
240 |
+
pitch : int
|
241 |
+
Integer representation of a pitch class.
|
242 |
+
|
243 |
+
"""
|
244 |
+
return self.modify(self._chroma_id[(ord(pitch_str[0]) - ord('C')) % 7],
|
245 |
+
pitch_str[1:]) % 12
|
246 |
+
|
247 |
+
def interval(self, interval_str):
|
248 |
+
"""
|
249 |
+
Convert a string representation of a musical interval into a pitch class
|
250 |
+
(e.g. a minor seventh 'b7' into 10, because it is 10 semitones above its
|
251 |
+
base note).
|
252 |
+
|
253 |
+
Parameters
|
254 |
+
----------
|
255 |
+
interval_str : str
|
256 |
+
Musical interval.
|
257 |
+
|
258 |
+
Returns
|
259 |
+
-------
|
260 |
+
pitch_class : int
|
261 |
+
Number of semitones to base note of interval.
|
262 |
+
|
263 |
+
"""
|
264 |
+
for i, c in enumerate(interval_str):
|
265 |
+
if c.isdigit():
|
266 |
+
return self.modify(self._chroma_id[int(interval_str[i:]) - 1],
|
267 |
+
interval_str[:i]) % 12
|
268 |
+
|
269 |
+
def interval_list(self, intervals_str, given_pitch_classes=None):
|
270 |
+
"""
|
271 |
+
Convert a list of intervals given as string to a binary pitch class
|
272 |
+
representation. For example, 'b3, 5' would become
|
273 |
+
[0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0].
|
274 |
+
|
275 |
+
Parameters
|
276 |
+
----------
|
277 |
+
intervals_str : str
|
278 |
+
List of intervals as comma-separated string (e.g. 'b3, 5').
|
279 |
+
given_pitch_classes : None or numpy array
|
280 |
+
If None, start with empty pitch class array, if numpy array of length
|
281 |
+
12, this array will be modified.
|
282 |
+
|
283 |
+
Returns
|
284 |
+
-------
|
285 |
+
pitch_classes : numpy array
|
286 |
+
Binary pitch class representation of intervals.
|
287 |
+
|
288 |
+
"""
|
289 |
+
if given_pitch_classes is None:
|
290 |
+
given_pitch_classes = np.zeros(12, dtype=np.int_)
|
291 |
+
for int_def in intervals_str[1:-1].split(','):
|
292 |
+
int_def = int_def.strip()
|
293 |
+
if int_def[0] == '*':
|
294 |
+
given_pitch_classes[self.interval(int_def[1:])] = 0
|
295 |
+
else:
|
296 |
+
given_pitch_classes[self.interval(int_def)] = 1
|
297 |
+
return given_pitch_classes
|
298 |
+
|
299 |
+
# mapping of shorthand interval notations to the actual interval representation
|
300 |
+
|
301 |
+
def chord_intervals(self, quality_str):
|
302 |
+
"""
|
303 |
+
Convert a chord quality string to a pitch class representation. For
|
304 |
+
example, 'maj' becomes [1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0].
|
305 |
+
|
306 |
+
Parameters
|
307 |
+
----------
|
308 |
+
quality_str : str
|
309 |
+
String defining the chord quality.
|
310 |
+
|
311 |
+
Returns
|
312 |
+
-------
|
313 |
+
pitch_classes : numpy array
|
314 |
+
Binary pitch class representation of chord quality.
|
315 |
+
|
316 |
+
"""
|
317 |
+
list_idx = quality_str.find('(')
|
318 |
+
if list_idx == -1:
|
319 |
+
return self._shorthands[quality_str].copy()
|
320 |
+
if list_idx != 0:
|
321 |
+
ivs = self._shorthands[quality_str[:list_idx]].copy()
|
322 |
+
else:
|
323 |
+
ivs = np.zeros(12, dtype=np.int_)
|
324 |
+
|
325 |
+
|
326 |
+
return self.interval_list(quality_str[list_idx:], ivs)
|
327 |
+
|
328 |
+
def load_chords(self, filename):
|
329 |
+
"""
|
330 |
+
Load chords from a text file.
|
331 |
+
|
332 |
+
The chord must follow the syntax defined in [1]_.
|
333 |
+
|
334 |
+
Parameters
|
335 |
+
----------
|
336 |
+
filename : str
|
337 |
+
File containing chord segments.
|
338 |
+
|
339 |
+
Returns
|
340 |
+
-------
|
341 |
+
crds : numpy structured array
|
342 |
+
Structured array with columns "start", "end", and "chord",
|
343 |
+
containing the beginning, end, and chord definition of chord
|
344 |
+
segments.
|
345 |
+
|
346 |
+
References
|
347 |
+
----------
|
348 |
+
.. [1] Christopher Harte, "Towards Automatic Extraction of Harmony
|
349 |
+
Information from Music Signals." Dissertation,
|
350 |
+
Department for Electronic Engineering, Queen Mary University of
|
351 |
+
London, 2010.
|
352 |
+
|
353 |
+
"""
|
354 |
+
start, end, chord_labels = [], [], []
|
355 |
+
with open(filename, 'r') as f:
|
356 |
+
for line in f:
|
357 |
+
if line:
|
358 |
+
|
359 |
+
splits = line.split()
|
360 |
+
if len(splits) == 3:
|
361 |
+
|
362 |
+
s = splits[0]
|
363 |
+
e = splits[1]
|
364 |
+
l = splits[2]
|
365 |
+
|
366 |
+
start.append(float(s))
|
367 |
+
end.append(float(e))
|
368 |
+
chord_labels.append(l)
|
369 |
+
|
370 |
+
crds = np.zeros(len(start), dtype=CHORD_ANN_DTYPE)
|
371 |
+
crds['start'] = start
|
372 |
+
crds['end'] = end
|
373 |
+
crds['chord'] = self.chords(chord_labels)
|
374 |
+
|
375 |
+
return crds
|
376 |
+
|
377 |
+
def reduce_to_triads(self, chords, keep_bass=False):
|
378 |
+
"""
|
379 |
+
Reduce chords to triads.
|
380 |
+
|
381 |
+
The function follows the reduction rules implemented in [1]_. If a chord
|
382 |
+
chord does not contain a third, major second or fourth, it is reduced to
|
383 |
+
a power chord. If it does not contain neither a third nor a fifth, it is
|
384 |
+
reduced to a single note "chord".
|
385 |
+
|
386 |
+
Parameters
|
387 |
+
----------
|
388 |
+
chords : numpy structured array
|
389 |
+
Chords to be reduced.
|
390 |
+
keep_bass : bool
|
391 |
+
Indicates whether to keep the bass note or set it to 0.
|
392 |
+
|
393 |
+
Returns
|
394 |
+
-------
|
395 |
+
reduced_chords : numpy structured array
|
396 |
+
Chords reduced to triads.
|
397 |
+
|
398 |
+
References
|
399 |
+
----------
|
400 |
+
.. [1] Johan Pauwels and Geoffroy Peeters.
|
401 |
+
"Evaluating Automatically Estimated Chord Sequences."
|
402 |
+
In Proceedings of ICASSP 2013, Vancouver, Canada, 2013.
|
403 |
+
|
404 |
+
"""
|
405 |
+
unison = chords['intervals'][:, 0].astype(bool)
|
406 |
+
maj_sec = chords['intervals'][:, 2].astype(bool)
|
407 |
+
min_third = chords['intervals'][:, 3].astype(bool)
|
408 |
+
maj_third = chords['intervals'][:, 4].astype(bool)
|
409 |
+
perf_fourth = chords['intervals'][:, 5].astype(bool)
|
410 |
+
dim_fifth = chords['intervals'][:, 6].astype(bool)
|
411 |
+
perf_fifth = chords['intervals'][:, 7].astype(bool)
|
412 |
+
aug_fifth = chords['intervals'][:, 8].astype(bool)
|
413 |
+
no_chord = (chords['intervals'] == NO_CHORD[-1]).all(axis=1)
|
414 |
+
|
415 |
+
reduced_chords = chords.copy()
|
416 |
+
ivs = reduced_chords['intervals']
|
417 |
+
|
418 |
+
ivs[~no_chord] = self.interval_list('(1)')
|
419 |
+
ivs[unison & perf_fifth] = self.interval_list('(1,5)')
|
420 |
+
ivs[~perf_fourth & maj_sec] = self._shorthands['sus2']
|
421 |
+
ivs[perf_fourth & ~maj_sec] = self._shorthands['sus4']
|
422 |
+
|
423 |
+
ivs[min_third] = self._shorthands['min']
|
424 |
+
ivs[min_third & aug_fifth & ~perf_fifth] = self.interval_list('(1,b3,#5)')
|
425 |
+
ivs[min_third & dim_fifth & ~perf_fifth] = self._shorthands['dim']
|
426 |
+
|
427 |
+
ivs[maj_third] = self._shorthands['maj']
|
428 |
+
ivs[maj_third & dim_fifth & ~perf_fifth] = self.interval_list('(1,3,b5)')
|
429 |
+
ivs[maj_third & aug_fifth & ~perf_fifth] = self._shorthands['aug']
|
430 |
+
|
431 |
+
if not keep_bass:
|
432 |
+
reduced_chords['bass'] = 0
|
433 |
+
else:
|
434 |
+
# remove bass notes if they are not part of the intervals anymore
|
435 |
+
reduced_chords['bass'] *= ivs[range(len(reduced_chords)),
|
436 |
+
reduced_chords['bass']]
|
437 |
+
# keep -1 in bass for no chords
|
438 |
+
reduced_chords['bass'][no_chord] = -1
|
439 |
+
|
440 |
+
return reduced_chords
|
441 |
+
|
442 |
+
def convert_to_id(self, root, is_major):
|
443 |
+
if root == -1:
|
444 |
+
return 24
|
445 |
+
else:
|
446 |
+
if is_major:
|
447 |
+
return root * 2
|
448 |
+
else:
|
449 |
+
return root * 2 + 1
|
450 |
+
|
451 |
+
def get_converted_chord(self, filename):
|
452 |
+
loaded_chord = self.load_chords(filename)
|
453 |
+
triads = self.reduce_to_triads(loaded_chord['chord'])
|
454 |
+
|
455 |
+
df = self.assign_chord_id(triads)
|
456 |
+
df['start'] = loaded_chord['start']
|
457 |
+
df['end'] = loaded_chord['end']
|
458 |
+
|
459 |
+
return df
|
460 |
+
|
461 |
+
def assign_chord_id(self, entry):
|
462 |
+
# maj, min chord only
|
463 |
+
# if you want to add other chord, change this part and get_converted_chord(reduce_to_triads)
|
464 |
+
df = pd.DataFrame(data=entry[['root', 'is_major']])
|
465 |
+
df['chord_id'] = df.apply(lambda row: self.convert_to_id(row['root'], row['is_major']), axis=1)
|
466 |
+
return df
|
467 |
+
|
468 |
+
def convert_to_id_voca(self, root, quality):
|
469 |
+
if root == -1:
|
470 |
+
return 169
|
471 |
+
else:
|
472 |
+
if quality == 'min':
|
473 |
+
return root * 14
|
474 |
+
elif quality == 'maj':
|
475 |
+
return root * 14 + 1
|
476 |
+
elif quality == 'dim':
|
477 |
+
return root * 14 + 2
|
478 |
+
elif quality == 'aug':
|
479 |
+
return root * 14 + 3
|
480 |
+
elif quality == 'min6':
|
481 |
+
return root * 14 + 4
|
482 |
+
elif quality == 'maj6':
|
483 |
+
return root * 14 + 5
|
484 |
+
elif quality == 'min7':
|
485 |
+
return root * 14 + 6
|
486 |
+
elif quality == 'minmaj7':
|
487 |
+
return root * 14 + 7
|
488 |
+
elif quality == 'maj7':
|
489 |
+
return root * 14 + 8
|
490 |
+
elif quality == '7':
|
491 |
+
return root * 14 + 9
|
492 |
+
elif quality == 'dim7':
|
493 |
+
return root * 14 + 10
|
494 |
+
elif quality == 'hdim7':
|
495 |
+
return root * 14 + 11
|
496 |
+
elif quality == 'sus2':
|
497 |
+
return root * 14 + 12
|
498 |
+
elif quality == 'sus4':
|
499 |
+
return root * 14 + 13
|
500 |
+
else:
|
501 |
+
return 168
|
502 |
+
|
503 |
+
|
504 |
+
def lab_file_error_modify(self, ref_labels):
|
505 |
+
for i in range(len(ref_labels)):
|
506 |
+
if ref_labels[i][-2:] == ':4':
|
507 |
+
ref_labels[i] = ref_labels[i].replace(':4', ':sus4')
|
508 |
+
elif ref_labels[i][-2:] == ':6':
|
509 |
+
ref_labels[i] = ref_labels[i].replace(':6', ':maj6')
|
510 |
+
elif ref_labels[i][-4:] == ':6/2':
|
511 |
+
ref_labels[i] = ref_labels[i].replace(':6/2', ':maj6/2')
|
512 |
+
elif ref_labels[i] == 'Emin/4':
|
513 |
+
ref_labels[i] = 'E:min/4'
|
514 |
+
elif ref_labels[i] == 'A7/3':
|
515 |
+
ref_labels[i] = 'A:7/3'
|
516 |
+
elif ref_labels[i] == 'Bb7/3':
|
517 |
+
ref_labels[i] = 'Bb:7/3'
|
518 |
+
elif ref_labels[i] == 'Bb7/5':
|
519 |
+
ref_labels[i] = 'Bb:7/5'
|
520 |
+
elif ref_labels[i].find(':') == -1:
|
521 |
+
if ref_labels[i].find('min') != -1:
|
522 |
+
ref_labels[i] = ref_labels[i][:ref_labels[i].find('min')] + ':' + ref_labels[i][ref_labels[i].find('min'):]
|
523 |
+
return ref_labels
|
524 |
+
|
audiocraft/audiocraft/data/chords.py
ADDED
@@ -0,0 +1,524 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# encoding: utf-8
|
2 |
+
"""
|
3 |
+
This module contains chord evaluation functionality.
|
4 |
+
|
5 |
+
It provides the evaluation measures used for the MIREX ACE task, and
|
6 |
+
tries to follow [1]_ and [2]_ as closely as possible.
|
7 |
+
|
8 |
+
Notes
|
9 |
+
-----
|
10 |
+
This implementation tries to follow the references and their implementation
|
11 |
+
(e.g., https://github.com/jpauwels/MusOOEvaluator for [2]_). However, there
|
12 |
+
are some known (and possibly some unknown) differences. If you find one not
|
13 |
+
listed in the following, please file an issue:
|
14 |
+
|
15 |
+
- Detected chord segments are adjusted to fit the length of the annotations.
|
16 |
+
In particular, this means that, if necessary, filler segments of 'no chord'
|
17 |
+
are added at beginnings and ends. This can result in different segmentation
|
18 |
+
scores compared to the original implementation.
|
19 |
+
|
20 |
+
References
|
21 |
+
----------
|
22 |
+
.. [1] Christopher Harte, "Towards Automatic Extraction of Harmony Information
|
23 |
+
from Music Signals." Dissertation,
|
24 |
+
Department for Electronic Engineering, Queen Mary University of London,
|
25 |
+
2010.
|
26 |
+
.. [2] Johan Pauwels and Geoffroy Peeters.
|
27 |
+
"Evaluating Automatically Estimated Chord Sequences."
|
28 |
+
In Proceedings of ICASSP 2013, Vancouver, Canada, 2013.
|
29 |
+
|
30 |
+
"""
|
31 |
+
|
32 |
+
import numpy as np
|
33 |
+
import pandas as pd
|
34 |
+
|
35 |
+
|
36 |
+
CHORD_DTYPE = [('root', np.int_),
|
37 |
+
('bass', np.int_),
|
38 |
+
('intervals', np.int_, (12,)),
|
39 |
+
('is_major',np.bool_)]
|
40 |
+
|
41 |
+
CHORD_ANN_DTYPE = [('start', np.float32),
|
42 |
+
('end', np.float32),
|
43 |
+
('chord', CHORD_DTYPE)]
|
44 |
+
|
45 |
+
NO_CHORD = (-1, -1, np.zeros(12, dtype=np.int_), False)
|
46 |
+
UNKNOWN_CHORD = (-1, -1, np.ones(12, dtype=np.int_) * -1, False)
|
47 |
+
|
48 |
+
PITCH_CLASS = ['C', 'C#', 'D', 'D#', 'E', 'F', 'F#', 'G', 'G#', 'A', 'A#', 'B']
|
49 |
+
|
50 |
+
|
51 |
+
def idx_to_chord(idx):
|
52 |
+
if idx == 24:
|
53 |
+
return "-"
|
54 |
+
elif idx == 25:
|
55 |
+
return u"\u03B5"
|
56 |
+
|
57 |
+
minmaj = idx % 2
|
58 |
+
root = idx // 2
|
59 |
+
|
60 |
+
return PITCH_CLASS[root] + ("M" if minmaj == 0 else "m")
|
61 |
+
|
62 |
+
class Chords:
|
63 |
+
|
64 |
+
def __init__(self):
|
65 |
+
self._shorthands = {
|
66 |
+
'maj': self.interval_list('(1,3,5)'),
|
67 |
+
'min': self.interval_list('(1,b3,5)'),
|
68 |
+
'dim': self.interval_list('(1,b3,b5)'),
|
69 |
+
'aug': self.interval_list('(1,3,#5)'),
|
70 |
+
'maj7': self.interval_list('(1,3,5,7)'),
|
71 |
+
'min7': self.interval_list('(1,b3,5,b7)'),
|
72 |
+
'7': self.interval_list('(1,3,5,b7)'),
|
73 |
+
'6': self.interval_list('(1,6)'), # custom
|
74 |
+
'5': self.interval_list('(1,5)'),
|
75 |
+
'4': self.interval_list('(1,4)'), # custom
|
76 |
+
'1': self.interval_list('(1)'),
|
77 |
+
'dim7': self.interval_list('(1,b3,b5,bb7)'),
|
78 |
+
'hdim7': self.interval_list('(1,b3,b5,b7)'),
|
79 |
+
'minmaj7': self.interval_list('(1,b3,5,7)'),
|
80 |
+
'maj6': self.interval_list('(1,3,5,6)'),
|
81 |
+
'min6': self.interval_list('(1,b3,5,6)'),
|
82 |
+
'9': self.interval_list('(1,3,5,b7,9)'),
|
83 |
+
'maj9': self.interval_list('(1,3,5,7,9)'),
|
84 |
+
'min9': self.interval_list('(1,b3,5,b7,9)'),
|
85 |
+
'add9': self.interval_list('(1,3,5,9)'), # custom
|
86 |
+
'sus2': self.interval_list('(1,2,5)'),
|
87 |
+
'sus4': self.interval_list('(1,4,5)'),
|
88 |
+
'7sus2': self.interval_list('(1,2,5,b7)'), # custom
|
89 |
+
'7sus4': self.interval_list('(1,4,5,b7)'), # custom
|
90 |
+
'11': self.interval_list('(1,3,5,b7,9,11)'),
|
91 |
+
'min11': self.interval_list('(1,b3,5,b7,9,11)'),
|
92 |
+
'13': self.interval_list('(1,3,5,b7,13)'),
|
93 |
+
'maj13': self.interval_list('(1,3,5,7,13)'),
|
94 |
+
'min13': self.interval_list('(1,b3,5,b7,13)')
|
95 |
+
}
|
96 |
+
|
97 |
+
def chords(self, labels):
|
98 |
+
|
99 |
+
"""
|
100 |
+
Transform a list of chord labels into an array of internal numeric
|
101 |
+
representations.
|
102 |
+
|
103 |
+
Parameters
|
104 |
+
----------
|
105 |
+
labels : list
|
106 |
+
List of chord labels (str).
|
107 |
+
|
108 |
+
Returns
|
109 |
+
-------
|
110 |
+
chords : numpy.array
|
111 |
+
Structured array with columns 'root', 'bass', and 'intervals',
|
112 |
+
containing a numeric representation of chords.
|
113 |
+
|
114 |
+
"""
|
115 |
+
crds = np.zeros(len(labels), dtype=CHORD_DTYPE)
|
116 |
+
cache = {}
|
117 |
+
for i, lbl in enumerate(labels):
|
118 |
+
cv = cache.get(lbl, None)
|
119 |
+
if cv is None:
|
120 |
+
cv = self.chord(lbl)
|
121 |
+
cache[lbl] = cv
|
122 |
+
crds[i] = cv
|
123 |
+
|
124 |
+
return crds
|
125 |
+
|
126 |
+
def label_error_modify(self, label):
|
127 |
+
if label == 'Emin/4': label = 'E:min/4'
|
128 |
+
elif label == 'A7/3': label = 'A:7/3'
|
129 |
+
elif label == 'Bb7/3': label = 'Bb:7/3'
|
130 |
+
elif label == 'Bb7/5': label = 'Bb:7/5'
|
131 |
+
elif label.find(':') == -1:
|
132 |
+
if label.find('min') != -1:
|
133 |
+
label = label[:label.find('min')] + ':' + label[label.find('min'):]
|
134 |
+
return label
|
135 |
+
|
136 |
+
def chord(self, label):
|
137 |
+
"""
|
138 |
+
Transform a chord label into the internal numeric represenation of
|
139 |
+
(root, bass, intervals array).
|
140 |
+
|
141 |
+
Parameters
|
142 |
+
----------
|
143 |
+
label : str
|
144 |
+
Chord label.
|
145 |
+
|
146 |
+
Returns
|
147 |
+
-------
|
148 |
+
chord : tuple
|
149 |
+
Numeric representation of the chord: (root, bass, intervals array).
|
150 |
+
|
151 |
+
"""
|
152 |
+
|
153 |
+
|
154 |
+
is_major = False
|
155 |
+
|
156 |
+
if label == 'N':
|
157 |
+
return NO_CHORD
|
158 |
+
if label == 'X':
|
159 |
+
return UNKNOWN_CHORD
|
160 |
+
|
161 |
+
label = self.label_error_modify(label)
|
162 |
+
|
163 |
+
c_idx = label.find(':')
|
164 |
+
s_idx = label.find('/')
|
165 |
+
|
166 |
+
if c_idx == -1:
|
167 |
+
quality_str = 'maj'
|
168 |
+
if s_idx == -1:
|
169 |
+
root_str = label
|
170 |
+
bass_str = ''
|
171 |
+
else:
|
172 |
+
root_str = label[:s_idx]
|
173 |
+
bass_str = label[s_idx + 1:]
|
174 |
+
else:
|
175 |
+
root_str = label[:c_idx]
|
176 |
+
if s_idx == -1:
|
177 |
+
quality_str = label[c_idx + 1:]
|
178 |
+
bass_str = ''
|
179 |
+
else:
|
180 |
+
quality_str = label[c_idx + 1:s_idx]
|
181 |
+
bass_str = label[s_idx + 1:]
|
182 |
+
|
183 |
+
root = self.pitch(root_str)
|
184 |
+
bass = self.interval(bass_str) if bass_str else 0
|
185 |
+
ivs = self.chord_intervals(quality_str)
|
186 |
+
ivs[bass] = 1
|
187 |
+
|
188 |
+
if 'min' in quality_str:
|
189 |
+
is_major = False
|
190 |
+
else:
|
191 |
+
is_major = True
|
192 |
+
|
193 |
+
|
194 |
+
return root, bass, ivs, is_major
|
195 |
+
|
196 |
+
_l = [0, 1, 1, 0, 1, 1, 1]
|
197 |
+
_chroma_id = (np.arange(len(_l) * 2) + 1) + np.array(_l + _l).cumsum() - 1
|
198 |
+
|
199 |
+
def modify(self, base_pitch, modifier):
|
200 |
+
"""
|
201 |
+
Modify a pitch class in integer representation by a given modifier string.
|
202 |
+
|
203 |
+
A modifier string can be any sequence of 'b' (one semitone down)
|
204 |
+
and '#' (one semitone up).
|
205 |
+
|
206 |
+
Parameters
|
207 |
+
----------
|
208 |
+
base_pitch : int
|
209 |
+
Pitch class as integer.
|
210 |
+
modifier : str
|
211 |
+
String of modifiers ('b' or '#').
|
212 |
+
|
213 |
+
Returns
|
214 |
+
-------
|
215 |
+
modified_pitch : int
|
216 |
+
Modified root note.
|
217 |
+
|
218 |
+
"""
|
219 |
+
for m in modifier:
|
220 |
+
if m == 'b':
|
221 |
+
base_pitch -= 1
|
222 |
+
elif m == '#':
|
223 |
+
base_pitch += 1
|
224 |
+
else:
|
225 |
+
raise ValueError('Unknown modifier: {}'.format(m))
|
226 |
+
return base_pitch
|
227 |
+
|
228 |
+
def pitch(self, pitch_str):
|
229 |
+
"""
|
230 |
+
Convert a string representation of a pitch class (consisting of root
|
231 |
+
note and modifiers) to an integer representation.
|
232 |
+
|
233 |
+
Parameters
|
234 |
+
----------
|
235 |
+
pitch_str : str
|
236 |
+
String representation of a pitch class.
|
237 |
+
|
238 |
+
Returns
|
239 |
+
-------
|
240 |
+
pitch : int
|
241 |
+
Integer representation of a pitch class.
|
242 |
+
|
243 |
+
"""
|
244 |
+
return self.modify(self._chroma_id[(ord(pitch_str[0]) - ord('C')) % 7],
|
245 |
+
pitch_str[1:]) % 12
|
246 |
+
|
247 |
+
def interval(self, interval_str):
|
248 |
+
"""
|
249 |
+
Convert a string representation of a musical interval into a pitch class
|
250 |
+
(e.g. a minor seventh 'b7' into 10, because it is 10 semitones above its
|
251 |
+
base note).
|
252 |
+
|
253 |
+
Parameters
|
254 |
+
----------
|
255 |
+
interval_str : str
|
256 |
+
Musical interval.
|
257 |
+
|
258 |
+
Returns
|
259 |
+
-------
|
260 |
+
pitch_class : int
|
261 |
+
Number of semitones to base note of interval.
|
262 |
+
|
263 |
+
"""
|
264 |
+
for i, c in enumerate(interval_str):
|
265 |
+
if c.isdigit():
|
266 |
+
return self.modify(self._chroma_id[int(interval_str[i:]) - 1],
|
267 |
+
interval_str[:i]) % 12
|
268 |
+
|
269 |
+
def interval_list(self, intervals_str, given_pitch_classes=None):
|
270 |
+
"""
|
271 |
+
Convert a list of intervals given as string to a binary pitch class
|
272 |
+
representation. For example, 'b3, 5' would become
|
273 |
+
[0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0].
|
274 |
+
|
275 |
+
Parameters
|
276 |
+
----------
|
277 |
+
intervals_str : str
|
278 |
+
List of intervals as comma-separated string (e.g. 'b3, 5').
|
279 |
+
given_pitch_classes : None or numpy array
|
280 |
+
If None, start with empty pitch class array, if numpy array of length
|
281 |
+
12, this array will be modified.
|
282 |
+
|
283 |
+
Returns
|
284 |
+
-------
|
285 |
+
pitch_classes : numpy array
|
286 |
+
Binary pitch class representation of intervals.
|
287 |
+
|
288 |
+
"""
|
289 |
+
if given_pitch_classes is None:
|
290 |
+
given_pitch_classes = np.zeros(12, dtype=np.int_)
|
291 |
+
for int_def in intervals_str[1:-1].split(','):
|
292 |
+
int_def = int_def.strip()
|
293 |
+
if int_def[0] == '*':
|
294 |
+
given_pitch_classes[self.interval(int_def[1:])] = 0
|
295 |
+
else:
|
296 |
+
given_pitch_classes[self.interval(int_def)] = 1
|
297 |
+
return given_pitch_classes
|
298 |
+
|
299 |
+
# mapping of shorthand interval notations to the actual interval representation
|
300 |
+
|
301 |
+
def chord_intervals(self, quality_str):
|
302 |
+
"""
|
303 |
+
Convert a chord quality string to a pitch class representation. For
|
304 |
+
example, 'maj' becomes [1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0].
|
305 |
+
|
306 |
+
Parameters
|
307 |
+
----------
|
308 |
+
quality_str : str
|
309 |
+
String defining the chord quality.
|
310 |
+
|
311 |
+
Returns
|
312 |
+
-------
|
313 |
+
pitch_classes : numpy array
|
314 |
+
Binary pitch class representation of chord quality.
|
315 |
+
|
316 |
+
"""
|
317 |
+
list_idx = quality_str.find('(')
|
318 |
+
if list_idx == -1:
|
319 |
+
return self._shorthands[quality_str].copy()
|
320 |
+
if list_idx != 0:
|
321 |
+
ivs = self._shorthands[quality_str[:list_idx]].copy()
|
322 |
+
else:
|
323 |
+
ivs = np.zeros(12, dtype=np.int_)
|
324 |
+
|
325 |
+
|
326 |
+
return self.interval_list(quality_str[list_idx:], ivs)
|
327 |
+
|
328 |
+
def load_chords(self, filename):
|
329 |
+
"""
|
330 |
+
Load chords from a text file.
|
331 |
+
|
332 |
+
The chord must follow the syntax defined in [1]_.
|
333 |
+
|
334 |
+
Parameters
|
335 |
+
----------
|
336 |
+
filename : str
|
337 |
+
File containing chord segments.
|
338 |
+
|
339 |
+
Returns
|
340 |
+
-------
|
341 |
+
crds : numpy structured array
|
342 |
+
Structured array with columns "start", "end", and "chord",
|
343 |
+
containing the beginning, end, and chord definition of chord
|
344 |
+
segments.
|
345 |
+
|
346 |
+
References
|
347 |
+
----------
|
348 |
+
.. [1] Christopher Harte, "Towards Automatic Extraction of Harmony
|
349 |
+
Information from Music Signals." Dissertation,
|
350 |
+
Department for Electronic Engineering, Queen Mary University of
|
351 |
+
London, 2010.
|
352 |
+
|
353 |
+
"""
|
354 |
+
start, end, chord_labels = [], [], []
|
355 |
+
with open(filename, 'r') as f:
|
356 |
+
for line in f:
|
357 |
+
if line:
|
358 |
+
|
359 |
+
splits = line.split()
|
360 |
+
if len(splits) == 3:
|
361 |
+
|
362 |
+
s = splits[0]
|
363 |
+
e = splits[1]
|
364 |
+
l = splits[2]
|
365 |
+
|
366 |
+
start.append(float(s))
|
367 |
+
end.append(float(e))
|
368 |
+
chord_labels.append(l)
|
369 |
+
|
370 |
+
crds = np.zeros(len(start), dtype=CHORD_ANN_DTYPE)
|
371 |
+
crds['start'] = start
|
372 |
+
crds['end'] = end
|
373 |
+
crds['chord'] = self.chords(chord_labels)
|
374 |
+
|
375 |
+
return crds
|
376 |
+
|
377 |
+
def reduce_to_triads(self, chords, keep_bass=False):
|
378 |
+
"""
|
379 |
+
Reduce chords to triads.
|
380 |
+
|
381 |
+
The function follows the reduction rules implemented in [1]_. If a chord
|
382 |
+
chord does not contain a third, major second or fourth, it is reduced to
|
383 |
+
a power chord. If it does not contain neither a third nor a fifth, it is
|
384 |
+
reduced to a single note "chord".
|
385 |
+
|
386 |
+
Parameters
|
387 |
+
----------
|
388 |
+
chords : numpy structured array
|
389 |
+
Chords to be reduced.
|
390 |
+
keep_bass : bool
|
391 |
+
Indicates whether to keep the bass note or set it to 0.
|
392 |
+
|
393 |
+
Returns
|
394 |
+
-------
|
395 |
+
reduced_chords : numpy structured array
|
396 |
+
Chords reduced to triads.
|
397 |
+
|
398 |
+
References
|
399 |
+
----------
|
400 |
+
.. [1] Johan Pauwels and Geoffroy Peeters.
|
401 |
+
"Evaluating Automatically Estimated Chord Sequences."
|
402 |
+
In Proceedings of ICASSP 2013, Vancouver, Canada, 2013.
|
403 |
+
|
404 |
+
"""
|
405 |
+
unison = chords['intervals'][:, 0].astype(bool)
|
406 |
+
maj_sec = chords['intervals'][:, 2].astype(bool)
|
407 |
+
min_third = chords['intervals'][:, 3].astype(bool)
|
408 |
+
maj_third = chords['intervals'][:, 4].astype(bool)
|
409 |
+
perf_fourth = chords['intervals'][:, 5].astype(bool)
|
410 |
+
dim_fifth = chords['intervals'][:, 6].astype(bool)
|
411 |
+
perf_fifth = chords['intervals'][:, 7].astype(bool)
|
412 |
+
aug_fifth = chords['intervals'][:, 8].astype(bool)
|
413 |
+
no_chord = (chords['intervals'] == NO_CHORD[-1]).all(axis=1)
|
414 |
+
|
415 |
+
reduced_chords = chords.copy()
|
416 |
+
ivs = reduced_chords['intervals']
|
417 |
+
|
418 |
+
ivs[~no_chord] = self.interval_list('(1)')
|
419 |
+
ivs[unison & perf_fifth] = self.interval_list('(1,5)')
|
420 |
+
ivs[~perf_fourth & maj_sec] = self._shorthands['sus2']
|
421 |
+
ivs[perf_fourth & ~maj_sec] = self._shorthands['sus4']
|
422 |
+
|
423 |
+
ivs[min_third] = self._shorthands['min']
|
424 |
+
ivs[min_third & aug_fifth & ~perf_fifth] = self.interval_list('(1,b3,#5)')
|
425 |
+
ivs[min_third & dim_fifth & ~perf_fifth] = self._shorthands['dim']
|
426 |
+
|
427 |
+
ivs[maj_third] = self._shorthands['maj']
|
428 |
+
ivs[maj_third & dim_fifth & ~perf_fifth] = self.interval_list('(1,3,b5)')
|
429 |
+
ivs[maj_third & aug_fifth & ~perf_fifth] = self._shorthands['aug']
|
430 |
+
|
431 |
+
if not keep_bass:
|
432 |
+
reduced_chords['bass'] = 0
|
433 |
+
else:
|
434 |
+
# remove bass notes if they are not part of the intervals anymore
|
435 |
+
reduced_chords['bass'] *= ivs[range(len(reduced_chords)),
|
436 |
+
reduced_chords['bass']]
|
437 |
+
# keep -1 in bass for no chords
|
438 |
+
reduced_chords['bass'][no_chord] = -1
|
439 |
+
|
440 |
+
return reduced_chords
|
441 |
+
|
442 |
+
def convert_to_id(self, root, is_major):
|
443 |
+
if root == -1:
|
444 |
+
return 24
|
445 |
+
else:
|
446 |
+
if is_major:
|
447 |
+
return root * 2
|
448 |
+
else:
|
449 |
+
return root * 2 + 1
|
450 |
+
|
451 |
+
def get_converted_chord(self, filename):
|
452 |
+
loaded_chord = self.load_chords(filename)
|
453 |
+
triads = self.reduce_to_triads(loaded_chord['chord'])
|
454 |
+
|
455 |
+
df = self.assign_chord_id(triads)
|
456 |
+
df['start'] = loaded_chord['start']
|
457 |
+
df['end'] = loaded_chord['end']
|
458 |
+
|
459 |
+
return df
|
460 |
+
|
461 |
+
def assign_chord_id(self, entry):
|
462 |
+
# maj, min chord only
|
463 |
+
# if you want to add other chord, change this part and get_converted_chord(reduce_to_triads)
|
464 |
+
df = pd.DataFrame(data=entry[['root', 'is_major']])
|
465 |
+
df['chord_id'] = df.apply(lambda row: self.convert_to_id(row['root'], row['is_major']), axis=1)
|
466 |
+
return df
|
467 |
+
|
468 |
+
def convert_to_id_voca(self, root, quality):
|
469 |
+
if root == -1:
|
470 |
+
return 169
|
471 |
+
else:
|
472 |
+
if quality == 'min':
|
473 |
+
return root * 14
|
474 |
+
elif quality == 'maj':
|
475 |
+
return root * 14 + 1
|
476 |
+
elif quality == 'dim':
|
477 |
+
return root * 14 + 2
|
478 |
+
elif quality == 'aug':
|
479 |
+
return root * 14 + 3
|
480 |
+
elif quality == 'min6':
|
481 |
+
return root * 14 + 4
|
482 |
+
elif quality == 'maj6':
|
483 |
+
return root * 14 + 5
|
484 |
+
elif quality == 'min7':
|
485 |
+
return root * 14 + 6
|
486 |
+
elif quality == 'minmaj7':
|
487 |
+
return root * 14 + 7
|
488 |
+
elif quality == 'maj7':
|
489 |
+
return root * 14 + 8
|
490 |
+
elif quality == '7':
|
491 |
+
return root * 14 + 9
|
492 |
+
elif quality == 'dim7':
|
493 |
+
return root * 14 + 10
|
494 |
+
elif quality == 'hdim7':
|
495 |
+
return root * 14 + 11
|
496 |
+
elif quality == 'sus2':
|
497 |
+
return root * 14 + 12
|
498 |
+
elif quality == 'sus4':
|
499 |
+
return root * 14 + 13
|
500 |
+
else:
|
501 |
+
return 168
|
502 |
+
|
503 |
+
|
504 |
+
def lab_file_error_modify(self, ref_labels):
|
505 |
+
for i in range(len(ref_labels)):
|
506 |
+
if ref_labels[i][-2:] == ':4':
|
507 |
+
ref_labels[i] = ref_labels[i].replace(':4', ':sus4')
|
508 |
+
elif ref_labels[i][-2:] == ':6':
|
509 |
+
ref_labels[i] = ref_labels[i].replace(':6', ':maj6')
|
510 |
+
elif ref_labels[i][-4:] == ':6/2':
|
511 |
+
ref_labels[i] = ref_labels[i].replace(':6/2', ':maj6/2')
|
512 |
+
elif ref_labels[i] == 'Emin/4':
|
513 |
+
ref_labels[i] = 'E:min/4'
|
514 |
+
elif ref_labels[i] == 'A7/3':
|
515 |
+
ref_labels[i] = 'A:7/3'
|
516 |
+
elif ref_labels[i] == 'Bb7/3':
|
517 |
+
ref_labels[i] = 'Bb:7/3'
|
518 |
+
elif ref_labels[i] == 'Bb7/5':
|
519 |
+
ref_labels[i] = 'Bb:7/5'
|
520 |
+
elif ref_labels[i].find(':') == -1:
|
521 |
+
if ref_labels[i].find('min') != -1:
|
522 |
+
ref_labels[i] = ref_labels[i][:ref_labels[i].find('min')] + ':' + ref_labels[i][ref_labels[i].find('min'):]
|
523 |
+
return ref_labels
|
524 |
+
|
audiocraft/audiocraft/data/info_audio_dataset.py
ADDED
@@ -0,0 +1,110 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
+
# All rights reserved.
|
3 |
+
#
|
4 |
+
# This source code is licensed under the license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
6 |
+
"""Base classes for the datasets that also provide non-audio metadata,
|
7 |
+
e.g. description, text transcription etc.
|
8 |
+
"""
|
9 |
+
from dataclasses import dataclass
|
10 |
+
import logging
|
11 |
+
import math
|
12 |
+
import re
|
13 |
+
import typing as tp
|
14 |
+
|
15 |
+
import torch
|
16 |
+
|
17 |
+
from .audio_dataset import AudioDataset, AudioMeta
|
18 |
+
from ..environment import AudioCraftEnvironment
|
19 |
+
from ..modules.conditioners import SegmentWithAttributes, ConditioningAttributes
|
20 |
+
|
21 |
+
|
22 |
+
logger = logging.getLogger(__name__)
|
23 |
+
|
24 |
+
|
25 |
+
def _clusterify_meta(meta: AudioMeta) -> AudioMeta:
|
26 |
+
"""Monkey-patch meta to match cluster specificities."""
|
27 |
+
meta.path = AudioCraftEnvironment.apply_dataset_mappers(meta.path)
|
28 |
+
if meta.info_path is not None:
|
29 |
+
meta.info_path.zip_path = AudioCraftEnvironment.apply_dataset_mappers(meta.info_path.zip_path)
|
30 |
+
return meta
|
31 |
+
|
32 |
+
|
33 |
+
def clusterify_all_meta(meta: tp.List[AudioMeta]) -> tp.List[AudioMeta]:
|
34 |
+
"""Monkey-patch all meta to match cluster specificities."""
|
35 |
+
return [_clusterify_meta(m) for m in meta]
|
36 |
+
|
37 |
+
|
38 |
+
@dataclass
|
39 |
+
class AudioInfo(SegmentWithAttributes):
|
40 |
+
"""Dummy SegmentInfo with empty attributes.
|
41 |
+
|
42 |
+
The InfoAudioDataset is expected to return metadata that inherits
|
43 |
+
from SegmentWithAttributes class and can return conditioning attributes.
|
44 |
+
|
45 |
+
This basically guarantees all datasets will be compatible with current
|
46 |
+
solver that contain conditioners requiring this.
|
47 |
+
"""
|
48 |
+
audio_tokens: tp.Optional[torch.Tensor] = None # populated when using cached batch for training a LM.
|
49 |
+
|
50 |
+
def to_condition_attributes(self) -> ConditioningAttributes:
|
51 |
+
return ConditioningAttributes()
|
52 |
+
|
53 |
+
|
54 |
+
class InfoAudioDataset(AudioDataset):
|
55 |
+
"""AudioDataset that always returns metadata as SegmentWithAttributes along with the audio waveform.
|
56 |
+
|
57 |
+
See `audiocraft.data.audio_dataset.AudioDataset` for initialization arguments.
|
58 |
+
"""
|
59 |
+
def __init__(self, meta: tp.List[AudioMeta], **kwargs):
|
60 |
+
super().__init__(clusterify_all_meta(meta), **kwargs)
|
61 |
+
|
62 |
+
def __getitem__(self, index: int) -> tp.Union[torch.Tensor, tp.Tuple[torch.Tensor, SegmentWithAttributes]]:
|
63 |
+
if not self.return_info:
|
64 |
+
wav = super().__getitem__(index)
|
65 |
+
assert isinstance(wav, torch.Tensor)
|
66 |
+
return wav
|
67 |
+
wav, meta = super().__getitem__(index)
|
68 |
+
return wav, AudioInfo(**meta.to_dict())
|
69 |
+
|
70 |
+
|
71 |
+
def get_keyword_or_keyword_list(value: tp.Optional[str]) -> tp.Union[tp.Optional[str], tp.Optional[tp.List[str]]]:
|
72 |
+
"""Preprocess a single keyword or possible a list of keywords."""
|
73 |
+
if isinstance(value, list):
|
74 |
+
return get_keyword_list(value)
|
75 |
+
else:
|
76 |
+
return get_keyword(value)
|
77 |
+
|
78 |
+
|
79 |
+
def get_string(value: tp.Optional[str]) -> tp.Optional[str]:
|
80 |
+
"""Preprocess a single keyword."""
|
81 |
+
if value is None or (not isinstance(value, str)) or len(value) == 0 or value == 'None':
|
82 |
+
return None
|
83 |
+
else:
|
84 |
+
return value.strip()
|
85 |
+
|
86 |
+
|
87 |
+
def get_keyword(value: tp.Optional[str]) -> tp.Optional[str]:
|
88 |
+
"""Preprocess a single keyword."""
|
89 |
+
if value is None or (not isinstance(value, str)) or len(value) == 0 or value == 'None':
|
90 |
+
return None
|
91 |
+
else:
|
92 |
+
return value.strip().lower()
|
93 |
+
|
94 |
+
|
95 |
+
def get_keyword_list(values: tp.Union[str, tp.List[str]]) -> tp.Optional[tp.List[str]]:
|
96 |
+
"""Preprocess a list of keywords."""
|
97 |
+
if isinstance(values, str):
|
98 |
+
values = [v.strip() for v in re.split(r'[,\s]', values)]
|
99 |
+
elif isinstance(values, float) and math.isnan(values):
|
100 |
+
values = []
|
101 |
+
if not isinstance(values, list):
|
102 |
+
logger.debug(f"Unexpected keyword list {values}")
|
103 |
+
values = [str(values)]
|
104 |
+
|
105 |
+
kws = [get_keyword(v) for v in values]
|
106 |
+
kw_list = [k for k in kws if k is not None]
|
107 |
+
if len(kw_list) == 0:
|
108 |
+
return None
|
109 |
+
else:
|
110 |
+
return kw_list
|
audiocraft/audiocraft/data/music_dataset.py
ADDED
@@ -0,0 +1,349 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
+
# All rights reserved.
|
3 |
+
#
|
4 |
+
# This source code is licensed under the license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
6 |
+
"""Dataset of music tracks with rich metadata.
|
7 |
+
"""
|
8 |
+
from dataclasses import dataclass, field, fields, replace
|
9 |
+
import gzip
|
10 |
+
import json
|
11 |
+
import logging
|
12 |
+
from pathlib import Path
|
13 |
+
import random
|
14 |
+
import typing as tp
|
15 |
+
import pretty_midi
|
16 |
+
import numpy as np
|
17 |
+
|
18 |
+
import torch
|
19 |
+
import torch.nn.functional as F
|
20 |
+
from .btc_chords import Chords
|
21 |
+
|
22 |
+
from .info_audio_dataset import (
|
23 |
+
InfoAudioDataset,
|
24 |
+
AudioInfo,
|
25 |
+
get_keyword_list,
|
26 |
+
get_keyword,
|
27 |
+
get_string
|
28 |
+
)
|
29 |
+
from ..modules.conditioners import (
|
30 |
+
ConditioningAttributes,
|
31 |
+
JointEmbedCondition,
|
32 |
+
WavCondition,
|
33 |
+
ChordCondition,
|
34 |
+
BeatCondition
|
35 |
+
)
|
36 |
+
from ..utils.utils import warn_once
|
37 |
+
|
38 |
+
|
39 |
+
logger = logging.getLogger(__name__)
|
40 |
+
|
41 |
+
CHORDS = Chords()
|
42 |
+
|
43 |
+
|
44 |
+
@dataclass
|
45 |
+
class MusicInfo(AudioInfo):
|
46 |
+
"""Segment info augmented with music metadata.
|
47 |
+
"""
|
48 |
+
# music-specific metadata
|
49 |
+
title: tp.Optional[str] = None
|
50 |
+
artist: tp.Optional[str] = None # anonymized artist id, used to ensure no overlap between splits
|
51 |
+
key: tp.Optional[str] = None
|
52 |
+
bpm: tp.Optional[float] = None
|
53 |
+
genre: tp.Optional[str] = None
|
54 |
+
moods: tp.Optional[list] = None
|
55 |
+
keywords: tp.Optional[list] = None
|
56 |
+
description: tp.Optional[str] = None
|
57 |
+
name: tp.Optional[str] = None
|
58 |
+
instrument: tp.Optional[str] = None
|
59 |
+
chord: tp.Optional[ChordCondition] = None
|
60 |
+
beat: tp.Optional[BeatCondition] = None
|
61 |
+
# original wav accompanying the metadata
|
62 |
+
self_wav: tp.Optional[WavCondition] = None
|
63 |
+
# dict mapping attributes names to tuple of wav, text and metadata
|
64 |
+
joint_embed: tp.Dict[str, JointEmbedCondition] = field(default_factory=dict)
|
65 |
+
|
66 |
+
@property
|
67 |
+
def has_music_meta(self) -> bool:
|
68 |
+
return self.name is not None
|
69 |
+
|
70 |
+
def to_condition_attributes(self) -> ConditioningAttributes:
|
71 |
+
out = ConditioningAttributes()
|
72 |
+
for _field in fields(self):
|
73 |
+
key, value = _field.name, getattr(self, _field.name)
|
74 |
+
if key == 'self_wav':
|
75 |
+
out.wav[key] = value
|
76 |
+
elif key == 'chord':
|
77 |
+
out.chord[key] = value
|
78 |
+
elif key == 'beat':
|
79 |
+
out.beat[key] = value
|
80 |
+
elif key == 'joint_embed':
|
81 |
+
for embed_attribute, embed_cond in value.items():
|
82 |
+
out.joint_embed[embed_attribute] = embed_cond
|
83 |
+
else:
|
84 |
+
if isinstance(value, list):
|
85 |
+
value = ' '.join(value)
|
86 |
+
out.text[key] = value
|
87 |
+
return out
|
88 |
+
|
89 |
+
@staticmethod
|
90 |
+
def attribute_getter(attribute):
|
91 |
+
if attribute == 'bpm':
|
92 |
+
preprocess_func = get_bpm
|
93 |
+
elif attribute == 'key':
|
94 |
+
preprocess_func = get_musical_key
|
95 |
+
elif attribute in ['moods', 'keywords']:
|
96 |
+
preprocess_func = get_keyword_list
|
97 |
+
elif attribute in ['genre', 'name', 'instrument']:
|
98 |
+
preprocess_func = get_keyword
|
99 |
+
elif attribute in ['title', 'artist', 'description']:
|
100 |
+
preprocess_func = get_string
|
101 |
+
else:
|
102 |
+
preprocess_func = None
|
103 |
+
return preprocess_func
|
104 |
+
|
105 |
+
@classmethod
|
106 |
+
def from_dict(cls, dictionary: dict, fields_required: bool = False):
|
107 |
+
_dictionary: tp.Dict[str, tp.Any] = {}
|
108 |
+
|
109 |
+
# allow a subset of attributes to not be loaded from the dictionary
|
110 |
+
# these attributes may be populated later
|
111 |
+
post_init_attributes = ['self_wav', 'chord', 'beat', 'joint_embed']
|
112 |
+
optional_fields = ['keywords']
|
113 |
+
|
114 |
+
for _field in fields(cls):
|
115 |
+
if _field.name in post_init_attributes:
|
116 |
+
continue
|
117 |
+
elif _field.name not in dictionary:
|
118 |
+
if fields_required and _field.name not in optional_fields:
|
119 |
+
raise KeyError(f"Unexpected missing key: {_field.name}")
|
120 |
+
else:
|
121 |
+
preprocess_func: tp.Optional[tp.Callable] = cls.attribute_getter(_field.name)
|
122 |
+
value = dictionary[_field.name]
|
123 |
+
if preprocess_func:
|
124 |
+
value = preprocess_func(value)
|
125 |
+
_dictionary[_field.name] = value
|
126 |
+
return cls(**_dictionary)
|
127 |
+
|
128 |
+
|
129 |
+
def augment_music_info_description(music_info: MusicInfo, merge_text_p: float = 0.,
|
130 |
+
drop_desc_p: float = 0., drop_other_p: float = 0.) -> MusicInfo:
|
131 |
+
"""Augment MusicInfo description with additional metadata fields and potential dropout.
|
132 |
+
Additional textual attributes are added given probability 'merge_text_conditions_p' and
|
133 |
+
the original textual description is dropped from the augmented description given probability drop_desc_p.
|
134 |
+
|
135 |
+
Args:
|
136 |
+
music_info (MusicInfo): The music metadata to augment.
|
137 |
+
merge_text_p (float): Probability of merging additional metadata to the description.
|
138 |
+
If provided value is 0, then no merging is performed.
|
139 |
+
drop_desc_p (float): Probability of dropping the original description on text merge.
|
140 |
+
if provided value is 0, then no drop out is performed.
|
141 |
+
drop_other_p (float): Probability of dropping the other fields used for text augmentation.
|
142 |
+
Returns:
|
143 |
+
MusicInfo: The MusicInfo with augmented textual description.
|
144 |
+
"""
|
145 |
+
def is_valid_field(field_name: str, field_value: tp.Any) -> bool:
|
146 |
+
valid_field_name = field_name in ['key', 'bpm', 'genre', 'moods', 'instrument', 'keywords']
|
147 |
+
valid_field_value = field_value is not None and isinstance(field_value, (int, float, str, list))
|
148 |
+
keep_field = random.uniform(0, 1) < drop_other_p
|
149 |
+
return valid_field_name and valid_field_value and keep_field
|
150 |
+
|
151 |
+
def process_value(v: tp.Any) -> str:
|
152 |
+
if isinstance(v, (int, float, str)):
|
153 |
+
return str(v)
|
154 |
+
if isinstance(v, list):
|
155 |
+
return ", ".join(v)
|
156 |
+
else:
|
157 |
+
raise ValueError(f"Unknown type for text value! ({type(v), v})")
|
158 |
+
|
159 |
+
description = music_info.description
|
160 |
+
|
161 |
+
metadata_text = ""
|
162 |
+
# metadata_text = "rock style music, consistent rhythm, catchy song."
|
163 |
+
if random.uniform(0, 1) < merge_text_p:
|
164 |
+
meta_pairs = [f'{_field.name}: {process_value(getattr(music_info, _field.name))}'
|
165 |
+
for _field in fields(music_info) if is_valid_field(_field.name, getattr(music_info, _field.name))]
|
166 |
+
random.shuffle(meta_pairs)
|
167 |
+
metadata_text = ". ".join(meta_pairs)
|
168 |
+
description = description if not random.uniform(0, 1) < drop_desc_p else None
|
169 |
+
logger.debug(f"Applying text augmentation on MMI info. description: {description}, metadata: {metadata_text}")
|
170 |
+
|
171 |
+
if description is None:
|
172 |
+
description = metadata_text if len(metadata_text) > 1 else None
|
173 |
+
else:
|
174 |
+
description = ". ".join([description.rstrip('.'), metadata_text])
|
175 |
+
description = description.strip() if description else None
|
176 |
+
|
177 |
+
music_info = replace(music_info)
|
178 |
+
music_info.description = description
|
179 |
+
return music_info
|
180 |
+
|
181 |
+
|
182 |
+
class Paraphraser:
|
183 |
+
def __init__(self, paraphrase_source: tp.Union[str, Path], paraphrase_p: float = 0.):
|
184 |
+
self.paraphrase_p = paraphrase_p
|
185 |
+
open_fn = gzip.open if str(paraphrase_source).lower().endswith('.gz') else open
|
186 |
+
with open_fn(paraphrase_source, 'rb') as f: # type: ignore
|
187 |
+
self.paraphrase_source = json.loads(f.read())
|
188 |
+
logger.info(f"loaded paraphrasing source from: {paraphrase_source}")
|
189 |
+
|
190 |
+
def sample_paraphrase(self, audio_path: str, description: str):
|
191 |
+
if random.random() >= self.paraphrase_p:
|
192 |
+
return description
|
193 |
+
info_path = Path(audio_path).with_suffix('.json')
|
194 |
+
if info_path not in self.paraphrase_source:
|
195 |
+
warn_once(logger, f"{info_path} not in paraphrase source!")
|
196 |
+
return description
|
197 |
+
new_desc = random.choice(self.paraphrase_source[info_path])
|
198 |
+
logger.debug(f"{description} -> {new_desc}")
|
199 |
+
return new_desc
|
200 |
+
|
201 |
+
|
202 |
+
class MusicDataset(InfoAudioDataset):
|
203 |
+
"""Music dataset is an AudioDataset with music-related metadata.
|
204 |
+
|
205 |
+
Args:
|
206 |
+
info_fields_required (bool): Whether to enforce having required fields.
|
207 |
+
merge_text_p (float): Probability of merging additional metadata to the description.
|
208 |
+
drop_desc_p (float): Probability of dropping the original description on text merge.
|
209 |
+
drop_other_p (float): Probability of dropping the other fields used for text augmentation.
|
210 |
+
joint_embed_attributes (list[str]): A list of attributes for which joint embedding metadata is returned.
|
211 |
+
paraphrase_source (str, optional): Path to the .json or .json.gz file containing the
|
212 |
+
paraphrases for the description. The json should be a dict with keys are the
|
213 |
+
original info path (e.g. track_path.json) and each value is a list of possible
|
214 |
+
paraphrased.
|
215 |
+
paraphrase_p (float): probability of taking a paraphrase.
|
216 |
+
|
217 |
+
See `audiocraft.data.info_audio_dataset.InfoAudioDataset` for full initialization arguments.
|
218 |
+
"""
|
219 |
+
def __init__(self, *args, info_fields_required: bool = True,
|
220 |
+
merge_text_p: float = 0., drop_desc_p: float = 0., drop_other_p: float = 0.,
|
221 |
+
joint_embed_attributes: tp.List[str] = [],
|
222 |
+
paraphrase_source: tp.Optional[str] = None, paraphrase_p: float = 0,
|
223 |
+
**kwargs):
|
224 |
+
kwargs['return_info'] = True # We require the info for each song of the dataset.
|
225 |
+
super().__init__(*args, **kwargs)
|
226 |
+
self.info_fields_required = info_fields_required
|
227 |
+
self.merge_text_p = merge_text_p
|
228 |
+
self.drop_desc_p = drop_desc_p
|
229 |
+
self.drop_other_p = drop_other_p
|
230 |
+
self.joint_embed_attributes = joint_embed_attributes
|
231 |
+
self.paraphraser = None
|
232 |
+
self.downsample_rate = 640
|
233 |
+
self.sr = 32000
|
234 |
+
if paraphrase_source is not None:
|
235 |
+
self.paraphraser = Paraphraser(paraphrase_source, paraphrase_p)
|
236 |
+
|
237 |
+
def __getitem__(self, index):
|
238 |
+
wav, info = super().__getitem__(index) # wav_seg and seg_info
|
239 |
+
info_data = info.to_dict()
|
240 |
+
|
241 |
+
# unpack info
|
242 |
+
target_sr = self.sr
|
243 |
+
n_frames_wave = info.n_frames
|
244 |
+
n_frames_feat = int(info.n_frames // self.downsample_rate)
|
245 |
+
|
246 |
+
music_info_path = str(info.meta.path).replace('no_vocal.wav', 'tags.json')
|
247 |
+
chord_path = str(info.meta.path).replace('no_vocal.wav', 'chord.lab')
|
248 |
+
beats_path = str(info.meta.path).replace('no_vocal.wav', 'beats.npy')
|
249 |
+
|
250 |
+
if all([
|
251 |
+
not Path(music_info_path).exists(),
|
252 |
+
not Path(beats_path).exists(),
|
253 |
+
not Path(chord_path).exists(),
|
254 |
+
]):
|
255 |
+
raise FileNotFoundError
|
256 |
+
|
257 |
+
### music info
|
258 |
+
with open(music_info_path, 'r') as json_file:
|
259 |
+
music_data = json.load(json_file)
|
260 |
+
music_data.update(info_data)
|
261 |
+
music_info = MusicInfo.from_dict(music_data, fields_required=self.info_fields_required)
|
262 |
+
if self.paraphraser is not None:
|
263 |
+
music_info.description = self.paraphraser.sample(music_info.meta.path, music_info.description)
|
264 |
+
if self.merge_text_p:
|
265 |
+
music_info = augment_music_info_description(
|
266 |
+
music_info, self.merge_text_p, self.drop_desc_p, self.drop_other_p)
|
267 |
+
|
268 |
+
|
269 |
+
### load features to tensors ###
|
270 |
+
feat_hz = target_sr/self.downsample_rate
|
271 |
+
## beat&bar: 2 x T
|
272 |
+
feat_beats = np.zeros((2, n_frames_feat))
|
273 |
+
|
274 |
+
beats_np = np.load(beats_path)
|
275 |
+
beat_time = beats_np[:, 0]
|
276 |
+
bar_time = beats_np[np.where(beats_np[:, 1] == 1)[0], 0]
|
277 |
+
beat_frame = [
|
278 |
+
int((t-info.seek_time)*feat_hz) for t in beat_time
|
279 |
+
if (t >= info.seek_time and t < info.seek_time + self.segment_duration)]
|
280 |
+
bar_frame =[
|
281 |
+
int((t-info.seek_time)*feat_hz) for t in bar_time
|
282 |
+
if (t >= info.seek_time and t < info.seek_time + self.segment_duration)]
|
283 |
+
feat_beats[0, beat_frame] = 1
|
284 |
+
feat_beats[1, bar_frame] = 1
|
285 |
+
kernel = np.array([0.05, 0.1, 0.3, 0.9, 0.3, 0.1, 0.05])
|
286 |
+
feat_beats[0] = np.convolve(feat_beats[0] , kernel, 'same') # apply soft kernel
|
287 |
+
beat_events = feat_beats[0] + feat_beats[1]
|
288 |
+
beat_events = torch.tensor(beat_events).unsqueeze(0) # [T] -> [1, T]
|
289 |
+
|
290 |
+
music_info.beat = BeatCondition(beat=beat_events[None], length=torch.tensor([n_frames_feat]),
|
291 |
+
bpm=[music_data["bpm"]], path=[music_info_path], seek_frame=[info.seek_time*target_sr//self.downsample_rate])
|
292 |
+
|
293 |
+
## chord: 12 x T
|
294 |
+
feat_chord = np.zeros((12, n_frames_feat)) # root| ivs
|
295 |
+
with open(chord_path, 'r') as f:
|
296 |
+
for line in f.readlines():
|
297 |
+
splits = line.split()
|
298 |
+
if len(splits) == 3:
|
299 |
+
st_sec, ed_sec, ctag = splits
|
300 |
+
st_sec = float(st_sec) - info.seek_time
|
301 |
+
ed_sec = float(ed_sec) - info.seek_time
|
302 |
+
st_frame = int(st_sec*feat_hz)
|
303 |
+
ed_frame = int(ed_sec*feat_hz)
|
304 |
+
|
305 |
+
# 12 chorma
|
306 |
+
mhot = CHORDS.chord(ctag)
|
307 |
+
final_vec = np.roll(mhot[2], mhot[0])
|
308 |
+
|
309 |
+
final_vec = final_vec[..., None]
|
310 |
+
feat_chord[:, st_frame:ed_frame] = final_vec
|
311 |
+
feat_chord = torch.from_numpy(feat_chord)
|
312 |
+
|
313 |
+
music_info.chord = ChordCondition(
|
314 |
+
chord=feat_chord[None], length=torch.tensor([n_frames_feat]),
|
315 |
+
bpm=[music_data["bpm"]], path=[chord_path], seek_frame=[info.seek_time*self.sr//self.downsample_rate])
|
316 |
+
|
317 |
+
music_info.self_wav = WavCondition(
|
318 |
+
wav=wav[None], length=torch.tensor([info.n_frames]),
|
319 |
+
sample_rate=[info.sample_rate], path=[info.meta.path], seek_time=[info.seek_time])
|
320 |
+
|
321 |
+
for att in self.joint_embed_attributes:
|
322 |
+
att_value = getattr(music_info, att)
|
323 |
+
joint_embed_cond = JointEmbedCondition(
|
324 |
+
wav[None], [att_value], torch.tensor([info.n_frames]),
|
325 |
+
sample_rate=[info.sample_rate], path=[info.meta.path], seek_time=[info.seek_time])
|
326 |
+
music_info.joint_embed[att] = joint_embed_cond
|
327 |
+
|
328 |
+
return wav, music_info
|
329 |
+
|
330 |
+
|
331 |
+
def get_musical_key(value: tp.Optional[str]) -> tp.Optional[str]:
|
332 |
+
"""Preprocess key keywords, discarding them if there are multiple key defined."""
|
333 |
+
if value is None or (not isinstance(value, str)) or len(value) == 0 or value == 'None':
|
334 |
+
return None
|
335 |
+
elif ',' in value:
|
336 |
+
# For now, we discard when multiple keys are defined separated with comas
|
337 |
+
return None
|
338 |
+
else:
|
339 |
+
return value.strip().lower()
|
340 |
+
|
341 |
+
|
342 |
+
def get_bpm(value: tp.Optional[str]) -> tp.Optional[float]:
|
343 |
+
"""Preprocess to a float."""
|
344 |
+
if value is None:
|
345 |
+
return None
|
346 |
+
try:
|
347 |
+
return float(value)
|
348 |
+
except ValueError:
|
349 |
+
return None
|
audiocraft/audiocraft/data/sound_dataset.py
ADDED
@@ -0,0 +1,330 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
+
# All rights reserved.
|
3 |
+
#
|
4 |
+
# This source code is licensed under the license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
6 |
+
"""Dataset of audio with a simple description.
|
7 |
+
"""
|
8 |
+
|
9 |
+
from dataclasses import dataclass, fields, replace
|
10 |
+
import json
|
11 |
+
from pathlib import Path
|
12 |
+
import random
|
13 |
+
import typing as tp
|
14 |
+
|
15 |
+
import numpy as np
|
16 |
+
import torch
|
17 |
+
|
18 |
+
from .info_audio_dataset import (
|
19 |
+
InfoAudioDataset,
|
20 |
+
get_keyword_or_keyword_list
|
21 |
+
)
|
22 |
+
from ..modules.conditioners import (
|
23 |
+
ConditioningAttributes,
|
24 |
+
SegmentWithAttributes,
|
25 |
+
WavCondition,
|
26 |
+
)
|
27 |
+
|
28 |
+
|
29 |
+
EPS = torch.finfo(torch.float32).eps
|
30 |
+
TARGET_LEVEL_LOWER = -35
|
31 |
+
TARGET_LEVEL_UPPER = -15
|
32 |
+
|
33 |
+
|
34 |
+
@dataclass
|
35 |
+
class SoundInfo(SegmentWithAttributes):
|
36 |
+
"""Segment info augmented with Sound metadata.
|
37 |
+
"""
|
38 |
+
description: tp.Optional[str] = None
|
39 |
+
self_wav: tp.Optional[torch.Tensor] = None
|
40 |
+
|
41 |
+
@property
|
42 |
+
def has_sound_meta(self) -> bool:
|
43 |
+
return self.description is not None
|
44 |
+
|
45 |
+
def to_condition_attributes(self) -> ConditioningAttributes:
|
46 |
+
out = ConditioningAttributes()
|
47 |
+
|
48 |
+
for _field in fields(self):
|
49 |
+
key, value = _field.name, getattr(self, _field.name)
|
50 |
+
if key == 'self_wav':
|
51 |
+
out.wav[key] = value
|
52 |
+
else:
|
53 |
+
out.text[key] = value
|
54 |
+
return out
|
55 |
+
|
56 |
+
@staticmethod
|
57 |
+
def attribute_getter(attribute):
|
58 |
+
if attribute == 'description':
|
59 |
+
preprocess_func = get_keyword_or_keyword_list
|
60 |
+
else:
|
61 |
+
preprocess_func = None
|
62 |
+
return preprocess_func
|
63 |
+
|
64 |
+
@classmethod
|
65 |
+
def from_dict(cls, dictionary: dict, fields_required: bool = False):
|
66 |
+
_dictionary: tp.Dict[str, tp.Any] = {}
|
67 |
+
|
68 |
+
# allow a subset of attributes to not be loaded from the dictionary
|
69 |
+
# these attributes may be populated later
|
70 |
+
post_init_attributes = ['self_wav']
|
71 |
+
|
72 |
+
for _field in fields(cls):
|
73 |
+
if _field.name in post_init_attributes:
|
74 |
+
continue
|
75 |
+
elif _field.name not in dictionary:
|
76 |
+
if fields_required:
|
77 |
+
raise KeyError(f"Unexpected missing key: {_field.name}")
|
78 |
+
else:
|
79 |
+
preprocess_func: tp.Optional[tp.Callable] = cls.attribute_getter(_field.name)
|
80 |
+
value = dictionary[_field.name]
|
81 |
+
if preprocess_func:
|
82 |
+
value = preprocess_func(value)
|
83 |
+
_dictionary[_field.name] = value
|
84 |
+
return cls(**_dictionary)
|
85 |
+
|
86 |
+
|
87 |
+
class SoundDataset(InfoAudioDataset):
|
88 |
+
"""Sound audio dataset: Audio dataset with environmental sound-specific metadata.
|
89 |
+
|
90 |
+
Args:
|
91 |
+
info_fields_required (bool): Whether all the mandatory metadata fields should be in the loaded metadata.
|
92 |
+
external_metadata_source (tp.Optional[str]): Folder containing JSON metadata for the corresponding dataset.
|
93 |
+
The metadata files contained in this folder are expected to match the stem of the audio file with
|
94 |
+
a json extension.
|
95 |
+
aug_p (float): Probability of performing audio mixing augmentation on the batch.
|
96 |
+
mix_p (float): Proportion of batch items that are mixed together when applying audio mixing augmentation.
|
97 |
+
mix_snr_low (int): Lowerbound for SNR value sampled for mixing augmentation.
|
98 |
+
mix_snr_high (int): Upperbound for SNR value sampled for mixing augmentation.
|
99 |
+
mix_min_overlap (float): Minimum overlap between audio files when performing mixing augmentation.
|
100 |
+
kwargs: Additional arguments for AudioDataset.
|
101 |
+
|
102 |
+
See `audiocraft.data.info_audio_dataset.InfoAudioDataset` for full initialization arguments.
|
103 |
+
"""
|
104 |
+
def __init__(
|
105 |
+
self,
|
106 |
+
*args,
|
107 |
+
info_fields_required: bool = True,
|
108 |
+
external_metadata_source: tp.Optional[str] = None,
|
109 |
+
aug_p: float = 0.,
|
110 |
+
mix_p: float = 0.,
|
111 |
+
mix_snr_low: int = -5,
|
112 |
+
mix_snr_high: int = 5,
|
113 |
+
mix_min_overlap: float = 0.5,
|
114 |
+
**kwargs
|
115 |
+
):
|
116 |
+
kwargs['return_info'] = True # We require the info for each song of the dataset.
|
117 |
+
super().__init__(*args, **kwargs)
|
118 |
+
self.info_fields_required = info_fields_required
|
119 |
+
self.external_metadata_source = external_metadata_source
|
120 |
+
self.aug_p = aug_p
|
121 |
+
self.mix_p = mix_p
|
122 |
+
if self.aug_p > 0:
|
123 |
+
assert self.mix_p > 0, "Expecting some mixing proportion mix_p if aug_p > 0"
|
124 |
+
assert self.channels == 1, "SoundDataset with audio mixing considers only monophonic audio"
|
125 |
+
self.mix_snr_low = mix_snr_low
|
126 |
+
self.mix_snr_high = mix_snr_high
|
127 |
+
self.mix_min_overlap = mix_min_overlap
|
128 |
+
|
129 |
+
def _get_info_path(self, path: tp.Union[str, Path]) -> Path:
|
130 |
+
"""Get path of JSON with metadata (description, etc.).
|
131 |
+
If there exists a JSON with the same name as 'path.name', then it will be used.
|
132 |
+
Else, such JSON will be searched for in an external json source folder if it exists.
|
133 |
+
"""
|
134 |
+
info_path = Path(path).with_suffix('.json')
|
135 |
+
if Path(info_path).exists():
|
136 |
+
return info_path
|
137 |
+
elif self.external_metadata_source and (Path(self.external_metadata_source) / info_path.name).exists():
|
138 |
+
return Path(self.external_metadata_source) / info_path.name
|
139 |
+
else:
|
140 |
+
raise Exception(f"Unable to find a metadata JSON for path: {path}")
|
141 |
+
|
142 |
+
def __getitem__(self, index):
|
143 |
+
wav, info = super().__getitem__(index)
|
144 |
+
info_data = info.to_dict()
|
145 |
+
info_path = self._get_info_path(info.meta.path)
|
146 |
+
if Path(info_path).exists():
|
147 |
+
with open(info_path, 'r') as json_file:
|
148 |
+
sound_data = json.load(json_file)
|
149 |
+
sound_data.update(info_data)
|
150 |
+
sound_info = SoundInfo.from_dict(sound_data, fields_required=self.info_fields_required)
|
151 |
+
# if there are multiple descriptions, sample one randomly
|
152 |
+
if isinstance(sound_info.description, list):
|
153 |
+
sound_info.description = random.choice(sound_info.description)
|
154 |
+
else:
|
155 |
+
sound_info = SoundInfo.from_dict(info_data, fields_required=False)
|
156 |
+
|
157 |
+
sound_info.self_wav = WavCondition(
|
158 |
+
wav=wav[None], length=torch.tensor([info.n_frames]),
|
159 |
+
sample_rate=[sound_info.sample_rate], path=[info.meta.path], seek_time=[info.seek_time])
|
160 |
+
|
161 |
+
return wav, sound_info
|
162 |
+
|
163 |
+
def collater(self, samples):
|
164 |
+
# when training, audio mixing is performed in the collate function
|
165 |
+
wav, sound_info = super().collater(samples) # SoundDataset always returns infos
|
166 |
+
if self.aug_p > 0:
|
167 |
+
wav, sound_info = mix_samples(wav, sound_info, self.aug_p, self.mix_p,
|
168 |
+
snr_low=self.mix_snr_low, snr_high=self.mix_snr_high,
|
169 |
+
min_overlap=self.mix_min_overlap)
|
170 |
+
return wav, sound_info
|
171 |
+
|
172 |
+
|
173 |
+
def rms_f(x: torch.Tensor) -> torch.Tensor:
|
174 |
+
return (x ** 2).mean(1).pow(0.5)
|
175 |
+
|
176 |
+
|
177 |
+
def normalize(audio: torch.Tensor, target_level: int = -25) -> torch.Tensor:
|
178 |
+
"""Normalize the signal to the target level."""
|
179 |
+
rms = rms_f(audio)
|
180 |
+
scalar = 10 ** (target_level / 20) / (rms + EPS)
|
181 |
+
audio = audio * scalar.unsqueeze(1)
|
182 |
+
return audio
|
183 |
+
|
184 |
+
|
185 |
+
def is_clipped(audio: torch.Tensor, clipping_threshold: float = 0.99) -> torch.Tensor:
|
186 |
+
return (abs(audio) > clipping_threshold).any(1)
|
187 |
+
|
188 |
+
|
189 |
+
def mix_pair(src: torch.Tensor, dst: torch.Tensor, min_overlap: float) -> torch.Tensor:
|
190 |
+
start = random.randint(0, int(src.shape[1] * (1 - min_overlap)))
|
191 |
+
remainder = src.shape[1] - start
|
192 |
+
if dst.shape[1] > remainder:
|
193 |
+
src[:, start:] = src[:, start:] + dst[:, :remainder]
|
194 |
+
else:
|
195 |
+
src[:, start:start+dst.shape[1]] = src[:, start:start+dst.shape[1]] + dst
|
196 |
+
return src
|
197 |
+
|
198 |
+
|
199 |
+
def snr_mixer(clean: torch.Tensor, noise: torch.Tensor, snr: int, min_overlap: float,
|
200 |
+
target_level: int = -25, clipping_threshold: float = 0.99) -> torch.Tensor:
|
201 |
+
"""Function to mix clean speech and noise at various SNR levels.
|
202 |
+
|
203 |
+
Args:
|
204 |
+
clean (torch.Tensor): Clean audio source to mix, of shape [B, T].
|
205 |
+
noise (torch.Tensor): Noise audio source to mix, of shape [B, T].
|
206 |
+
snr (int): SNR level when mixing.
|
207 |
+
min_overlap (float): Minimum overlap between the two mixed sources.
|
208 |
+
target_level (int): Gain level in dB.
|
209 |
+
clipping_threshold (float): Threshold for clipping the audio.
|
210 |
+
Returns:
|
211 |
+
torch.Tensor: The mixed audio, of shape [B, T].
|
212 |
+
"""
|
213 |
+
if clean.shape[1] > noise.shape[1]:
|
214 |
+
noise = torch.nn.functional.pad(noise, (0, clean.shape[1] - noise.shape[1]))
|
215 |
+
else:
|
216 |
+
noise = noise[:, :clean.shape[1]]
|
217 |
+
|
218 |
+
# normalizing to -25 dB FS
|
219 |
+
clean = clean / (clean.max(1)[0].abs().unsqueeze(1) + EPS)
|
220 |
+
clean = normalize(clean, target_level)
|
221 |
+
rmsclean = rms_f(clean)
|
222 |
+
|
223 |
+
noise = noise / (noise.max(1)[0].abs().unsqueeze(1) + EPS)
|
224 |
+
noise = normalize(noise, target_level)
|
225 |
+
rmsnoise = rms_f(noise)
|
226 |
+
|
227 |
+
# set the noise level for a given SNR
|
228 |
+
noisescalar = (rmsclean / (10 ** (snr / 20)) / (rmsnoise + EPS)).unsqueeze(1)
|
229 |
+
noisenewlevel = noise * noisescalar
|
230 |
+
|
231 |
+
# mix noise and clean speech
|
232 |
+
noisyspeech = mix_pair(clean, noisenewlevel, min_overlap)
|
233 |
+
|
234 |
+
# randomly select RMS value between -15 dBFS and -35 dBFS and normalize noisyspeech with that value
|
235 |
+
# there is a chance of clipping that might happen with very less probability, which is not a major issue.
|
236 |
+
noisy_rms_level = np.random.randint(TARGET_LEVEL_LOWER, TARGET_LEVEL_UPPER)
|
237 |
+
rmsnoisy = rms_f(noisyspeech)
|
238 |
+
scalarnoisy = (10 ** (noisy_rms_level / 20) / (rmsnoisy + EPS)).unsqueeze(1)
|
239 |
+
noisyspeech = noisyspeech * scalarnoisy
|
240 |
+
clean = clean * scalarnoisy
|
241 |
+
noisenewlevel = noisenewlevel * scalarnoisy
|
242 |
+
|
243 |
+
# final check to see if there are any amplitudes exceeding +/- 1. If so, normalize all the signals accordingly
|
244 |
+
clipped = is_clipped(noisyspeech)
|
245 |
+
if clipped.any():
|
246 |
+
noisyspeech_maxamplevel = noisyspeech[clipped].max(1)[0].abs().unsqueeze(1) / (clipping_threshold - EPS)
|
247 |
+
noisyspeech[clipped] = noisyspeech[clipped] / noisyspeech_maxamplevel
|
248 |
+
|
249 |
+
return noisyspeech
|
250 |
+
|
251 |
+
|
252 |
+
def snr_mix(src: torch.Tensor, dst: torch.Tensor, snr_low: int, snr_high: int, min_overlap: float):
|
253 |
+
if snr_low == snr_high:
|
254 |
+
snr = snr_low
|
255 |
+
else:
|
256 |
+
snr = np.random.randint(snr_low, snr_high)
|
257 |
+
mix = snr_mixer(src, dst, snr, min_overlap)
|
258 |
+
return mix
|
259 |
+
|
260 |
+
|
261 |
+
def mix_text(src_text: str, dst_text: str):
|
262 |
+
"""Mix text from different sources by concatenating them."""
|
263 |
+
if src_text == dst_text:
|
264 |
+
return src_text
|
265 |
+
return src_text + " " + dst_text
|
266 |
+
|
267 |
+
|
268 |
+
def mix_samples(wavs: torch.Tensor, infos: tp.List[SoundInfo], aug_p: float, mix_p: float,
|
269 |
+
snr_low: int, snr_high: int, min_overlap: float):
|
270 |
+
"""Mix samples within a batch, summing the waveforms and concatenating the text infos.
|
271 |
+
|
272 |
+
Args:
|
273 |
+
wavs (torch.Tensor): Audio tensors of shape [B, C, T].
|
274 |
+
infos (list[SoundInfo]): List of SoundInfo items corresponding to the audio.
|
275 |
+
aug_p (float): Augmentation probability.
|
276 |
+
mix_p (float): Proportion of items in the batch to mix (and merge) together.
|
277 |
+
snr_low (int): Lowerbound for sampling SNR.
|
278 |
+
snr_high (int): Upperbound for sampling SNR.
|
279 |
+
min_overlap (float): Minimum overlap between mixed samples.
|
280 |
+
Returns:
|
281 |
+
tuple[torch.Tensor, list[SoundInfo]]: A tuple containing the mixed wavs
|
282 |
+
and mixed SoundInfo for the given batch.
|
283 |
+
"""
|
284 |
+
# no mixing to perform within the batch
|
285 |
+
if mix_p == 0:
|
286 |
+
return wavs, infos
|
287 |
+
|
288 |
+
if random.uniform(0, 1) < aug_p:
|
289 |
+
# perform all augmentations on waveforms as [B, T]
|
290 |
+
# randomly picking pairs of audio to mix
|
291 |
+
assert wavs.size(1) == 1, f"Mix samples requires monophonic audio but C={wavs.size(1)}"
|
292 |
+
wavs = wavs.mean(dim=1, keepdim=False)
|
293 |
+
B, T = wavs.shape
|
294 |
+
k = int(mix_p * B)
|
295 |
+
mixed_sources_idx = torch.randperm(B)[:k]
|
296 |
+
mixed_targets_idx = torch.randperm(B)[:k]
|
297 |
+
aug_wavs = snr_mix(
|
298 |
+
wavs[mixed_sources_idx],
|
299 |
+
wavs[mixed_targets_idx],
|
300 |
+
snr_low,
|
301 |
+
snr_high,
|
302 |
+
min_overlap,
|
303 |
+
)
|
304 |
+
# mixing textual descriptions in metadata
|
305 |
+
descriptions = [info.description for info in infos]
|
306 |
+
aug_infos = []
|
307 |
+
for i, j in zip(mixed_sources_idx, mixed_targets_idx):
|
308 |
+
text = mix_text(descriptions[i], descriptions[j])
|
309 |
+
m = replace(infos[i])
|
310 |
+
m.description = text
|
311 |
+
aug_infos.append(m)
|
312 |
+
|
313 |
+
# back to [B, C, T]
|
314 |
+
aug_wavs = aug_wavs.unsqueeze(1)
|
315 |
+
assert aug_wavs.shape[0] > 0, "Samples mixing returned empty batch."
|
316 |
+
assert aug_wavs.dim() == 3, f"Returned wav should be [B, C, T] but dim = {aug_wavs.dim()}"
|
317 |
+
assert aug_wavs.shape[0] == len(aug_infos), "Mismatch between number of wavs and infos in the batch"
|
318 |
+
|
319 |
+
return aug_wavs, aug_infos # [B, C, T]
|
320 |
+
else:
|
321 |
+
# randomly pick samples in the batch to match
|
322 |
+
# the batch size when performing audio mixing
|
323 |
+
B, C, T = wavs.shape
|
324 |
+
k = int(mix_p * B)
|
325 |
+
wav_idx = torch.randperm(B)[:k]
|
326 |
+
wavs = wavs[wav_idx]
|
327 |
+
infos = [infos[i] for i in wav_idx]
|
328 |
+
assert wavs.shape[0] == len(infos), "Mismatch between number of wavs and infos in the batch"
|
329 |
+
|
330 |
+
return wavs, infos # [B, C, T]
|
audiocraft/audiocraft/data/zip.py
ADDED
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
+
# All rights reserved.
|
3 |
+
#
|
4 |
+
# This source code is licensed under the license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
6 |
+
"""Utility for reading some info from inside a zip file.
|
7 |
+
"""
|
8 |
+
|
9 |
+
import typing
|
10 |
+
import zipfile
|
11 |
+
|
12 |
+
from dataclasses import dataclass
|
13 |
+
from functools import lru_cache
|
14 |
+
from typing_extensions import Literal
|
15 |
+
|
16 |
+
|
17 |
+
DEFAULT_SIZE = 32
|
18 |
+
MODE = Literal['r', 'w', 'x', 'a']
|
19 |
+
|
20 |
+
|
21 |
+
@dataclass(order=True)
|
22 |
+
class PathInZip:
|
23 |
+
"""Hold a path of file within a zip file.
|
24 |
+
|
25 |
+
Args:
|
26 |
+
path (str): The convention is <path_to_zip>:<relative_path_inside_zip>.
|
27 |
+
Let's assume there is a zip file /some/location/foo.zip
|
28 |
+
and inside of it is a json file located at /data/file1.json,
|
29 |
+
Then we expect path = "/some/location/foo.zip:/data/file1.json".
|
30 |
+
"""
|
31 |
+
|
32 |
+
INFO_PATH_SEP = ':'
|
33 |
+
zip_path: str
|
34 |
+
file_path: str
|
35 |
+
|
36 |
+
def __init__(self, path: str) -> None:
|
37 |
+
split_path = path.split(self.INFO_PATH_SEP)
|
38 |
+
assert len(split_path) == 2
|
39 |
+
self.zip_path, self.file_path = split_path
|
40 |
+
|
41 |
+
@classmethod
|
42 |
+
def from_paths(cls, zip_path: str, file_path: str):
|
43 |
+
return cls(zip_path + cls.INFO_PATH_SEP + file_path)
|
44 |
+
|
45 |
+
def __str__(self) -> str:
|
46 |
+
return self.zip_path + self.INFO_PATH_SEP + self.file_path
|
47 |
+
|
48 |
+
|
49 |
+
def _open_zip(path: str, mode: MODE = 'r'):
|
50 |
+
return zipfile.ZipFile(path, mode)
|
51 |
+
|
52 |
+
|
53 |
+
_cached_open_zip = lru_cache(DEFAULT_SIZE)(_open_zip)
|
54 |
+
|
55 |
+
|
56 |
+
def set_zip_cache_size(max_size: int):
|
57 |
+
"""Sets the maximal LRU caching for zip file opening.
|
58 |
+
|
59 |
+
Args:
|
60 |
+
max_size (int): the maximal LRU cache.
|
61 |
+
"""
|
62 |
+
global _cached_open_zip
|
63 |
+
_cached_open_zip = lru_cache(max_size)(_open_zip)
|
64 |
+
|
65 |
+
|
66 |
+
def open_file_in_zip(path_in_zip: PathInZip, mode: str = 'r') -> typing.IO:
|
67 |
+
"""Opens a file stored inside a zip and returns a file-like object.
|
68 |
+
|
69 |
+
Args:
|
70 |
+
path_in_zip (PathInZip): A PathInZip object representing the file to return a file-like object of.
|
71 |
+
mode (str): The mode in which to open the file with.
|
72 |
+
Returns:
|
73 |
+
A file-like object for PathInZip.
|
74 |
+
"""
|
75 |
+
zf = _cached_open_zip(path_in_zip.zip_path)
|
76 |
+
return zf.open(path_in_zip.file_path)
|
audiocraft/audiocraft/environment.py
ADDED
@@ -0,0 +1,176 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
+
# All rights reserved.
|
3 |
+
#
|
4 |
+
# This source code is licensed under the license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
6 |
+
|
7 |
+
"""
|
8 |
+
Provides cluster and tools configuration across clusters (slurm, dora, utilities).
|
9 |
+
"""
|
10 |
+
|
11 |
+
import logging
|
12 |
+
import os
|
13 |
+
from pathlib import Path
|
14 |
+
import re
|
15 |
+
import typing as tp
|
16 |
+
|
17 |
+
import omegaconf
|
18 |
+
|
19 |
+
from .utils.cluster import _guess_cluster_type
|
20 |
+
|
21 |
+
|
22 |
+
logger = logging.getLogger(__name__)
|
23 |
+
|
24 |
+
|
25 |
+
class AudioCraftEnvironment:
|
26 |
+
"""Environment configuration for teams and clusters.
|
27 |
+
|
28 |
+
AudioCraftEnvironment picks compute cluster settings (slurm, dora) from the current running environment
|
29 |
+
or declared variable and the loaded team configuration. Additionally, the AudioCraftEnvironment
|
30 |
+
provides pointers to a reference folder resolved automatically across clusters that is shared across team members,
|
31 |
+
allowing to share sigs or other files to run jobs. Finally, it provides dataset mappers to automatically
|
32 |
+
map dataset file paths to new locations across clusters, allowing to use the same manifest of files across cluters.
|
33 |
+
|
34 |
+
The cluster type is identified automatically and base configuration file is read from config/teams.yaml.
|
35 |
+
Use the following environment variables to specify the cluster, team or configuration:
|
36 |
+
|
37 |
+
AUDIOCRAFT_CLUSTER (optional): Cluster type to enforce. Useful if the cluster type
|
38 |
+
cannot be inferred automatically.
|
39 |
+
AUDIOCRAFT_CONFIG (optional): Path to yaml config holding the teams configuration.
|
40 |
+
If not set, configuration is read from config/teams.yaml.
|
41 |
+
AUDIOCRAFT_TEAM (optional): Name of the team. Recommended to set to your own team.
|
42 |
+
Cluster configuration are shared across teams to match compute allocation,
|
43 |
+
specify your cluster configuration in the configuration file under a key mapping
|
44 |
+
your team name.
|
45 |
+
"""
|
46 |
+
_instance = None
|
47 |
+
DEFAULT_TEAM = "default"
|
48 |
+
|
49 |
+
def __init__(self) -> None:
|
50 |
+
"""Loads configuration."""
|
51 |
+
self.team: str = os.getenv("AUDIOCRAFT_TEAM", self.DEFAULT_TEAM)
|
52 |
+
cluster_type = _guess_cluster_type()
|
53 |
+
cluster = os.getenv(
|
54 |
+
"AUDIOCRAFT_CLUSTER", cluster_type.value
|
55 |
+
)
|
56 |
+
logger.info("Detecting cluster type %s", cluster_type)
|
57 |
+
|
58 |
+
self.cluster: str = cluster
|
59 |
+
|
60 |
+
config_path = os.getenv(
|
61 |
+
"AUDIOCRAFT_CONFIG",
|
62 |
+
Path(__file__)
|
63 |
+
.parent.parent.joinpath("config/teams", self.team)
|
64 |
+
.with_suffix(".yaml"),
|
65 |
+
)
|
66 |
+
self.config = omegaconf.OmegaConf.load(config_path)
|
67 |
+
self._dataset_mappers = []
|
68 |
+
cluster_config = self._get_cluster_config()
|
69 |
+
if "dataset_mappers" in cluster_config:
|
70 |
+
for pattern, repl in cluster_config["dataset_mappers"].items():
|
71 |
+
regex = re.compile(pattern)
|
72 |
+
self._dataset_mappers.append((regex, repl))
|
73 |
+
|
74 |
+
def _get_cluster_config(self) -> omegaconf.DictConfig:
|
75 |
+
assert isinstance(self.config, omegaconf.DictConfig)
|
76 |
+
return self.config[self.cluster]
|
77 |
+
|
78 |
+
@classmethod
|
79 |
+
def instance(cls):
|
80 |
+
if cls._instance is None:
|
81 |
+
cls._instance = cls()
|
82 |
+
return cls._instance
|
83 |
+
|
84 |
+
@classmethod
|
85 |
+
def reset(cls):
|
86 |
+
"""Clears the environment and forces a reload on next invocation."""
|
87 |
+
cls._instance = None
|
88 |
+
|
89 |
+
@classmethod
|
90 |
+
def get_team(cls) -> str:
|
91 |
+
"""Gets the selected team as dictated by the AUDIOCRAFT_TEAM env var.
|
92 |
+
If not defined, defaults to "labs".
|
93 |
+
"""
|
94 |
+
return cls.instance().team
|
95 |
+
|
96 |
+
@classmethod
|
97 |
+
def get_cluster(cls) -> str:
|
98 |
+
"""Gets the detected cluster.
|
99 |
+
This value can be overridden by the AUDIOCRAFT_CLUSTER env var.
|
100 |
+
"""
|
101 |
+
return cls.instance().cluster
|
102 |
+
|
103 |
+
@classmethod
|
104 |
+
def get_dora_dir(cls) -> Path:
|
105 |
+
"""Gets the path to the dora directory for the current team and cluster.
|
106 |
+
Value is overridden by the AUDIOCRAFT_DORA_DIR env var.
|
107 |
+
"""
|
108 |
+
cluster_config = cls.instance()._get_cluster_config()
|
109 |
+
dora_dir = os.getenv("AUDIOCRAFT_DORA_DIR", cluster_config["dora_dir"])
|
110 |
+
logger.warning(f"Dora directory: {dora_dir}")
|
111 |
+
return Path(dora_dir)
|
112 |
+
|
113 |
+
@classmethod
|
114 |
+
def get_reference_dir(cls) -> Path:
|
115 |
+
"""Gets the path to the reference directory for the current team and cluster.
|
116 |
+
Value is overridden by the AUDIOCRAFT_REFERENCE_DIR env var.
|
117 |
+
"""
|
118 |
+
cluster_config = cls.instance()._get_cluster_config()
|
119 |
+
return Path(os.getenv("AUDIOCRAFT_REFERENCE_DIR", cluster_config["reference_dir"]))
|
120 |
+
|
121 |
+
@classmethod
|
122 |
+
def get_slurm_exclude(cls) -> tp.Optional[str]:
|
123 |
+
"""Get the list of nodes to exclude for that cluster."""
|
124 |
+
cluster_config = cls.instance()._get_cluster_config()
|
125 |
+
return cluster_config.get("slurm_exclude")
|
126 |
+
|
127 |
+
@classmethod
|
128 |
+
def get_slurm_partitions(cls, partition_types: tp.Optional[tp.List[str]] = None) -> str:
|
129 |
+
"""Gets the requested partitions for the current team and cluster as a comma-separated string.
|
130 |
+
|
131 |
+
Args:
|
132 |
+
partition_types (list[str], optional): partition types to retrieve. Values must be
|
133 |
+
from ['global', 'team']. If not provided, the global partition is returned.
|
134 |
+
"""
|
135 |
+
if not partition_types:
|
136 |
+
partition_types = ["global"]
|
137 |
+
|
138 |
+
cluster_config = cls.instance()._get_cluster_config()
|
139 |
+
partitions = [
|
140 |
+
cluster_config["partitions"][partition_type]
|
141 |
+
for partition_type in partition_types
|
142 |
+
]
|
143 |
+
return ",".join(partitions)
|
144 |
+
|
145 |
+
@classmethod
|
146 |
+
def resolve_reference_path(cls, path: tp.Union[str, Path]) -> Path:
|
147 |
+
"""Converts reference placeholder in path with configured reference dir to resolve paths.
|
148 |
+
|
149 |
+
Args:
|
150 |
+
path (str or Path): Path to resolve.
|
151 |
+
Returns:
|
152 |
+
Path: Resolved path.
|
153 |
+
"""
|
154 |
+
path = str(path)
|
155 |
+
|
156 |
+
if path.startswith("//reference"):
|
157 |
+
reference_dir = cls.get_reference_dir()
|
158 |
+
logger.warn(f"Reference directory: {reference_dir}")
|
159 |
+
assert (
|
160 |
+
reference_dir.exists() and reference_dir.is_dir()
|
161 |
+
), f"Reference directory does not exist: {reference_dir}."
|
162 |
+
path = re.sub("^//reference", str(reference_dir), path)
|
163 |
+
|
164 |
+
return Path(path)
|
165 |
+
|
166 |
+
@classmethod
|
167 |
+
def apply_dataset_mappers(cls, path: str) -> str:
|
168 |
+
"""Applies dataset mapping regex rules as defined in the configuration.
|
169 |
+
If no rules are defined, the path is returned as-is.
|
170 |
+
"""
|
171 |
+
instance = cls.instance()
|
172 |
+
|
173 |
+
for pattern, repl in instance._dataset_mappers:
|
174 |
+
path = pattern.sub(repl, path)
|
175 |
+
|
176 |
+
return path
|
audiocraft/audiocraft/grids/__init__.py
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
+
# All rights reserved.
|
3 |
+
#
|
4 |
+
# This source code is licensed under the license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
6 |
+
"""Dora Grids."""
|
audiocraft/audiocraft/grids/_base_explorers.py
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
+
# All rights reserved.
|
3 |
+
#
|
4 |
+
# This source code is licensed under the license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
6 |
+
|
7 |
+
from abc import ABC, abstractmethod
|
8 |
+
import time
|
9 |
+
import typing as tp
|
10 |
+
from dora import Explorer
|
11 |
+
import treetable as tt
|
12 |
+
|
13 |
+
|
14 |
+
def get_sheep_ping(sheep) -> tp.Optional[str]:
|
15 |
+
"""Return the amount of time since the Sheep made some update
|
16 |
+
to its log. Returns a str using the relevant time unit."""
|
17 |
+
ping = None
|
18 |
+
if sheep.log is not None and sheep.log.exists():
|
19 |
+
delta = time.time() - sheep.log.stat().st_mtime
|
20 |
+
if delta > 3600 * 24:
|
21 |
+
ping = f'{delta / (3600 * 24):.1f}d'
|
22 |
+
elif delta > 3600:
|
23 |
+
ping = f'{delta / (3600):.1f}h'
|
24 |
+
elif delta > 60:
|
25 |
+
ping = f'{delta / 60:.1f}m'
|
26 |
+
else:
|
27 |
+
ping = f'{delta:.1f}s'
|
28 |
+
return ping
|
29 |
+
|
30 |
+
|
31 |
+
class BaseExplorer(ABC, Explorer):
|
32 |
+
"""Base explorer for AudioCraft grids.
|
33 |
+
|
34 |
+
All task specific solvers are expected to implement the `get_grid_metrics`
|
35 |
+
method to specify logic about metrics to display for a given task.
|
36 |
+
|
37 |
+
If additional stages are used, the child explorer must define how to handle
|
38 |
+
these new stages in the `process_history` and `process_sheep` methods.
|
39 |
+
"""
|
40 |
+
def stages(self):
|
41 |
+
return ["train", "valid", "evaluate"]
|
42 |
+
|
43 |
+
def get_grid_meta(self):
|
44 |
+
"""Returns the list of Meta information to display for each XP/job.
|
45 |
+
"""
|
46 |
+
return [
|
47 |
+
tt.leaf("index", align=">"),
|
48 |
+
tt.leaf("name", wrap=140),
|
49 |
+
tt.leaf("state"),
|
50 |
+
tt.leaf("sig", align=">"),
|
51 |
+
tt.leaf("sid", align="<"),
|
52 |
+
]
|
53 |
+
|
54 |
+
@abstractmethod
|
55 |
+
def get_grid_metrics(self):
|
56 |
+
"""Return the metrics that should be displayed in the tracking table.
|
57 |
+
"""
|
58 |
+
...
|
59 |
+
|
60 |
+
def process_sheep(self, sheep, history):
|
61 |
+
train = {
|
62 |
+
"epoch": len(history),
|
63 |
+
}
|
64 |
+
parts = {"train": train}
|
65 |
+
for metrics in history:
|
66 |
+
for key, sub in metrics.items():
|
67 |
+
part = parts.get(key, {})
|
68 |
+
if 'duration' in sub:
|
69 |
+
# Convert to minutes for readability.
|
70 |
+
sub['duration'] = sub['duration'] / 60.
|
71 |
+
part.update(sub)
|
72 |
+
parts[key] = part
|
73 |
+
ping = get_sheep_ping(sheep)
|
74 |
+
if ping is not None:
|
75 |
+
for name in self.stages():
|
76 |
+
if name not in parts:
|
77 |
+
parts[name] = {}
|
78 |
+
# Add the ping to each part for convenience.
|
79 |
+
parts[name]['ping'] = ping
|
80 |
+
return parts
|
audiocraft/audiocraft/grids/audiogen/__init__.py
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
+
# All rights reserved.
|
3 |
+
#
|
4 |
+
# This source code is licensed under the license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
6 |
+
"""AudioGen grids."""
|
audiocraft/audiocraft/grids/audiogen/audiogen_base_16khz.py
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
+
# All rights reserved.
|
3 |
+
#
|
4 |
+
# This source code is licensed under the license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
6 |
+
|
7 |
+
from ..musicgen._explorers import LMExplorer
|
8 |
+
from ...environment import AudioCraftEnvironment
|
9 |
+
|
10 |
+
|
11 |
+
@LMExplorer
|
12 |
+
def explorer(launcher):
|
13 |
+
partitions = AudioCraftEnvironment.get_slurm_partitions(['team', 'global'])
|
14 |
+
launcher.slurm_(gpus=64, partition=partitions)
|
15 |
+
launcher.bind_(solver='audiogen/audiogen_base_16khz')
|
16 |
+
# replace this by the desired environmental sound dataset
|
17 |
+
launcher.bind_(dset='internal/sounds_16khz')
|
18 |
+
|
19 |
+
fsdp = {'autocast': False, 'fsdp.use': True}
|
20 |
+
medium = {'model/lm/model_scale': 'medium'}
|
21 |
+
|
22 |
+
launcher.bind_(fsdp)
|
23 |
+
launcher(medium)
|
audiocraft/audiocraft/grids/audiogen/audiogen_pretrained_16khz_eval.py
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
+
# All rights reserved.
|
3 |
+
#
|
4 |
+
# This source code is licensed under the license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
6 |
+
|
7 |
+
"""
|
8 |
+
Evaluation with objective metrics for the pretrained AudioGen models.
|
9 |
+
This grid takes signature from the training grid and runs evaluation-only stage.
|
10 |
+
|
11 |
+
When running the grid for the first time, please use:
|
12 |
+
REGEN=1 dora grid audiogen.audiogen_pretrained_16khz_eval
|
13 |
+
and re-use the REGEN=1 option when the grid is changed to force regenerating it.
|
14 |
+
|
15 |
+
Note that you need the proper metrics external libraries setup to use all
|
16 |
+
the objective metrics activated in this grid. Refer to the README for more information.
|
17 |
+
"""
|
18 |
+
|
19 |
+
import os
|
20 |
+
|
21 |
+
from ..musicgen._explorers import GenerationEvalExplorer
|
22 |
+
from ...environment import AudioCraftEnvironment
|
23 |
+
from ... import train
|
24 |
+
|
25 |
+
|
26 |
+
def eval(launcher, batch_size: int = 32):
|
27 |
+
opts = {
|
28 |
+
'dset': 'audio/audiocaps_16khz',
|
29 |
+
'solver/audiogen/evaluation': 'objective_eval',
|
30 |
+
'execute_only': 'evaluate',
|
31 |
+
'+dataset.evaluate.batch_size': batch_size,
|
32 |
+
'+metrics.fad.tf.batch_size': 32,
|
33 |
+
}
|
34 |
+
# binary for FAD computation: replace this path with your own path
|
35 |
+
metrics_opts = {
|
36 |
+
'metrics.fad.tf.bin': '/data/home/jadecopet/local/usr/opt/google-research'
|
37 |
+
}
|
38 |
+
opt1 = {'generate.lm.use_sampling': True, 'generate.lm.top_k': 250, 'generate.lm.top_p': 0.}
|
39 |
+
opt2 = {'transformer_lm.two_step_cfg': True}
|
40 |
+
|
41 |
+
sub = launcher.bind(opts)
|
42 |
+
sub.bind_(metrics_opts)
|
43 |
+
|
44 |
+
# base objective metrics
|
45 |
+
sub(opt1, opt2)
|
46 |
+
|
47 |
+
|
48 |
+
@GenerationEvalExplorer
|
49 |
+
def explorer(launcher):
|
50 |
+
partitions = AudioCraftEnvironment.get_slurm_partitions(['team', 'global'])
|
51 |
+
launcher.slurm_(gpus=4, partition=partitions)
|
52 |
+
|
53 |
+
if 'REGEN' not in os.environ:
|
54 |
+
folder = train.main.dora.dir / 'grids' / __name__.split('.', 2)[-1]
|
55 |
+
with launcher.job_array():
|
56 |
+
for sig in folder.iterdir():
|
57 |
+
if not sig.is_symlink():
|
58 |
+
continue
|
59 |
+
xp = train.main.get_xp_from_sig(sig.name)
|
60 |
+
launcher(xp.argv)
|
61 |
+
return
|
62 |
+
|
63 |
+
audiogen_base = launcher.bind(solver="audiogen/audiogen_base_16khz")
|
64 |
+
audiogen_base.bind_({'autocast': False, 'fsdp.use': True})
|
65 |
+
|
66 |
+
audiogen_base_medium = audiogen_base.bind({'continue_from': '//pretrained/facebook/audiogen-medium'})
|
67 |
+
audiogen_base_medium.bind_({'model/lm/model_scale': 'medium'})
|
68 |
+
eval(audiogen_base_medium, batch_size=128)
|
audiocraft/audiocraft/grids/compression/__init__.py
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
+
# All rights reserved.
|
3 |
+
#
|
4 |
+
# This source code is licensed under the license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
6 |
+
"""EnCodec grids."""
|
audiocraft/audiocraft/grids/compression/_explorers.py
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
+
# All rights reserved.
|
3 |
+
#
|
4 |
+
# This source code is licensed under the license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
6 |
+
|
7 |
+
import treetable as tt
|
8 |
+
|
9 |
+
from .._base_explorers import BaseExplorer
|
10 |
+
|
11 |
+
|
12 |
+
class CompressionExplorer(BaseExplorer):
|
13 |
+
eval_metrics = ["sisnr", "visqol"]
|
14 |
+
|
15 |
+
def stages(self):
|
16 |
+
return ["train", "valid", "evaluate"]
|
17 |
+
|
18 |
+
def get_grid_meta(self):
|
19 |
+
"""Returns the list of Meta information to display for each XP/job.
|
20 |
+
"""
|
21 |
+
return [
|
22 |
+
tt.leaf("index", align=">"),
|
23 |
+
tt.leaf("name", wrap=140),
|
24 |
+
tt.leaf("state"),
|
25 |
+
tt.leaf("sig", align=">"),
|
26 |
+
]
|
27 |
+
|
28 |
+
def get_grid_metrics(self):
|
29 |
+
"""Return the metrics that should be displayed in the tracking table.
|
30 |
+
"""
|
31 |
+
return [
|
32 |
+
tt.group(
|
33 |
+
"train",
|
34 |
+
[
|
35 |
+
tt.leaf("epoch"),
|
36 |
+
tt.leaf("bandwidth", ".2f"),
|
37 |
+
tt.leaf("adv", ".4f"),
|
38 |
+
tt.leaf("d_loss", ".4f"),
|
39 |
+
],
|
40 |
+
align=">",
|
41 |
+
),
|
42 |
+
tt.group(
|
43 |
+
"valid",
|
44 |
+
[
|
45 |
+
tt.leaf("bandwidth", ".2f"),
|
46 |
+
tt.leaf("adv", ".4f"),
|
47 |
+
tt.leaf("msspec", ".4f"),
|
48 |
+
tt.leaf("sisnr", ".2f"),
|
49 |
+
],
|
50 |
+
align=">",
|
51 |
+
),
|
52 |
+
tt.group(
|
53 |
+
"evaluate", [tt.leaf(name, ".3f") for name in self.eval_metrics], align=">"
|
54 |
+
),
|
55 |
+
]
|