awacke1's picture
Update app.py
fc09229 verified
raw
history blame
6.77 kB
import streamlit as st
import openai
from openai import OpenAI
import os
import base64
import cv2
from moviepy.editor import VideoFileClip
# documentation
# 1. Cookbook: https://cookbook.openai.com/examples/gpt4o/introduction_to_gpt4o
# 2. Configure your Project and Orgs to limit/allow Models: https://platform.openai.com/settings/organization/general
# 3. Watch your Billing! https://platform.openai.com/settings/organization/billing/overview
# Set API key and organization ID from environment variables
openai.api_key = os.getenv('OPENAI_API_KEY')
openai.organization = os.getenv('OPENAI_ORG_ID')
client = OpenAI(api_key= os.getenv('OPENAI_API_KEY'), organization=os.getenv('OPENAI_ORG_ID'))
# Define the model to be used
#MODEL = "gpt-4o"
MODEL = "gpt-4o-2024-05-13"
def process_text():
text_input = st.text_input("Enter your text:")
if text_input:
completion = client.chat.completions.create(
model=MODEL,
messages=[
{"role": "system", "content": "You are a helpful assistant. Help me with my math homework!"},
{"role": "user", "content": f"Hello! Could you solve {text_input}?"}
]
)
st.write("Assistant: " + completion.choices[0].message.content)
def process_image(image_input):
if image_input:
base64_image = base64.b64encode(image_input.read()).decode("utf-8")
response = client.chat.completions.create(
model=MODEL,
messages=[
{"role": "system", "content": "You are a helpful assistant that responds in Markdown."},
{"role": "user", "content": [
{"type": "text", "text": "Help me understand what is in this picture and list ten facts as markdown outline with appropriate emojis that describes what you see."},
{"type": "image_url", "image_url": {
"url": f"data:image/png;base64,{base64_image}"}
}
]}
],
temperature=0.0,
)
st.markdown(response.choices[0].message.content)
def process_audio(audio_input):
if audio_input:
transcription = client.audio.transcriptions.create(
model="whisper-1",
file=audio_input,
)
response = client.chat.completions.create(
model=MODEL,
messages=[
{"role": "system", "content":"""You are generating a transcript summary. Create a summary of the provided transcription. Respond in Markdown."""},
{"role": "user", "content": [{"type": "text", "text": f"The audio transcription is: {transcription.text}"}],}
],
temperature=0,
)
st.markdown(response.choices[0].message.content)
def process_audio_for_video(video_input):
if video_input:
transcription = client.audio.transcriptions.create(
model="whisper-1",
file=video_input,
)
response = client.chat.completions.create(
model=MODEL,
messages=[
{"role": "system", "content":"""You are generating a transcript summary. Create a summary of the provided transcription. Respond in Markdown."""},
{"role": "user", "content": [{"type": "text", "text": f"The audio transcription is: {transcription}"}],}
],
temperature=0,
)
st.markdown(response.choices[0].message.content)
return response.choices[0].message.content
def save_video(video_file):
# Save the uploaded video file
with open(video_file.name, "wb") as f:
f.write(video_file.getbuffer())
return video_file.name
def process_video(video_path, seconds_per_frame=2):
base64Frames = []
base_video_path, _ = os.path.splitext(video_path)
video = cv2.VideoCapture(video_path)
total_frames = int(video.get(cv2.CAP_PROP_FRAME_COUNT))
fps = video.get(cv2.CAP_PROP_FPS)
frames_to_skip = int(fps * seconds_per_frame)
curr_frame = 0
# Loop through the video and extract frames at specified sampling rate
while curr_frame < total_frames - 1:
video.set(cv2.CAP_PROP_POS_FRAMES, curr_frame)
success, frame = video.read()
if not success:
break
_, buffer = cv2.imencode(".jpg", frame)
base64Frames.append(base64.b64encode(buffer).decode("utf-8"))
curr_frame += frames_to_skip
video.release()
# Extract audio from video
audio_path = f"{base_video_path}.mp3"
clip = VideoFileClip(video_path)
clip.audio.write_audiofile(audio_path, bitrate="32k")
clip.audio.close()
clip.close()
print(f"Extracted {len(base64Frames)} frames")
print(f"Extracted audio to {audio_path}")
return base64Frames, audio_path
def process_audio_and_video(video_input):
if video_input is not None:
# Save the uploaded video file
video_path = save_video(video_input )
# Process the saved video
base64Frames, audio_path = process_video(video_path, seconds_per_frame=1)
# Get the transcript for the video model call
transcript = process_audio_for_video(video_input)
# Generate a summary with visual and audio
response = client.chat.completions.create(
model=MODEL,
messages=[
{"role": "system", "content": """You are generating a video summary. Create a summary of the provided video and its transcript. Respond in Markdown"""},
{"role": "user", "content": [
"These are the frames from the video.",
*map(lambda x: {"type": "image_url",
"image_url": {"url": f'data:image/jpg;base64,{x}', "detail": "low"}}, base64Frames),
{"type": "text", "text": f"The audio transcription is: {transcript}"}
]},
],
temperature=0,
)
st.markdown(response.choices[0].message.content)
def main():
st.markdown("### OpenAI GPT-4o Model")
st.markdown("#### The Omni Model with Text, Audio, Image, and Video")
option = st.selectbox("Select an option", ("Text", "Image", "Audio", "Video"))
if option == "Text":
process_text()
elif option == "Image":
image_input = st.file_uploader("Upload an image", type=["jpg", "jpeg", "png"])
process_image(image_input)
elif option == "Audio":
audio_input = st.file_uploader("Upload an audio file", type=["mp3", "wav"])
process_audio(audio_input)
elif option == "Video":
video_input = st.file_uploader("Upload a video file", type=["mp4"])
process_audio_and_video(video_input)
if __name__ == "__main__":
main()