Spaces:
Build error
Build error
| import streamlit as st | |
| import openai | |
| import os | |
| import base64 | |
| import cv2 | |
| from moviepy.editor import VideoFileClip | |
| # Set API key and organization ID from environment variables | |
| openai.api_key = os.getenv('OPENAI_API_KEY') | |
| openai.organization = os.getenv('OPENAI_ORG_ID') | |
| # Define the model to be used | |
| MODEL = "gpt-4o" | |
| def process_text(): | |
| text_input = st.text_input("Enter your text:") | |
| if text_input: | |
| completion = openai.ChatCompletion.create( | |
| model=MODEL, | |
| messages=[ | |
| {"role": "system", "content": "You are a helpful assistant. Help me with my math homework!"}, | |
| {"role": "user", "content": f"Hello! Could you solve {text_input}?"} | |
| ] | |
| ) | |
| st.write("Assistant: " + completion.choices[0].message.content) | |
| def process_image(image_input): | |
| if image_input: | |
| base64_image = base64.b64encode(image_input.read()).decode("utf-8") | |
| response = openai.ChatCompletion.create( | |
| model=MODEL, | |
| messages=[ | |
| {"role": "system", "content": "You are a helpful assistant that responds in Markdown. Help me with my math homework!"}, | |
| {"role": "user", "content": [ | |
| {"type": "text", "text": "What's the area of the triangle?"}, | |
| {"type": "image_url", "image_url": { | |
| "url": f"data:image/png;base64,{base64_image}"} | |
| } | |
| ]} | |
| ], | |
| temperature=0.0, | |
| ) | |
| st.markdown(response.choices[0].message.content) | |
| def process_audio(audio_input): | |
| if audio_input: | |
| transcription = openai.Audio.transcriptions.create( | |
| model="whisper-1", | |
| file=audio_input, | |
| ) | |
| response = openai.ChatCompletion.create( | |
| model=MODEL, | |
| messages=[ | |
| {"role": "system", "content": "You are generating a transcript summary. Create a summary of the provided transcription. Respond in Markdown."}, | |
| {"role": "user", "content": [ | |
| {"type": "text", "text": f"The audio transcription is: {transcription.text}"} | |
| ]}, | |
| ], | |
| temperature=0, | |
| ) | |
| st.markdown(response.choices[0].message.content) | |
| def process_video(video_input): | |
| if video_input: | |
| base64Frames, audio_path = process_video_frames(video_input) | |
| transcription = openai.Audio.transcriptions.create( | |
| model="whisper-1", | |
| file=open(audio_path, "rb"), | |
| ) | |
| response = openai.ChatCompletion.create( | |
| model=MODEL, | |
| messages=[ | |
| {"role": "system", "content": "You are generating a video summary. Create a summary of the provided video and its transcript. Respond in Markdown"}, | |
| {"role": "user", "content": [ | |
| "These are the frames from the video.", | |
| *map(lambda x: {"type": "image_url", | |
| "image_url": {"url": f'data:image/jpg;base64,{x}', "detail": "low"}}, base64Frames), | |
| {"type": "text", "text": f"The audio transcription is: {transcription.text}"} | |
| ]}, | |
| ], | |
| temperature=0, | |
| ) | |
| st.markdown(response.choices[0].message.content) | |
| def process_video_frames(video_path, seconds_per_frame=2): | |
| base64Frames = [] | |
| base_video_path, _ = os.path.splitext(video_path.name) | |
| video = cv2.VideoCapture(video_path.name) | |
| total_frames = int(video.get(cv2.CAP_PROP_FRAME_COUNT)) | |
| fps = video.get(cv2.CAP_PROP_FPS) | |
| frames_to_skip = int(fps * seconds_per_frame) | |
| curr_frame = 0 | |
| while curr_frame < total_frames - 1: | |
| video.set(cv2.CAP_PROP_POS_FRAMES, curr_frame) | |
| success, frame = video.read() | |
| if not success: | |
| break | |
| _, buffer = cv2.imencode(".jpg", frame) | |
| base64Frames.append(base64.b64encode(buffer).decode("utf-8")) | |
| curr_frame += frames_to_skip | |
| video.release() | |
| audio_path = f"{base_video_path}.mp3" | |
| clip = VideoFileClip(video_path.name) | |
| clip.audio.write_audiofile(audio_path, bitrate="32k") | |
| clip.audio.close() | |
| clip.close() | |
| return base64Frames, audio_path | |
| def main(): | |
| st.title("Omni Demo") | |
| option = st.selectbox("Select an option", ("Text", "Image", "Audio", "Video")) | |
| if option == "Text": | |
| process_text() | |
| elif option == "Image": | |
| image_input = st.file_uploader("Upload an image", type=["jpg", "jpeg", "png"]) | |
| process_image(image_input) | |
| elif option == "Audio": | |
| audio_input = st.file_uploader("Upload an audio file", type=["mp3", "wav"]) | |
| process_audio(audio_input) | |
| elif option == "Video": | |
| video_input = st.file_uploader("Upload a video file", type=["mp4"]) | |
| process_video(video_input) | |
| if __name__ == "__main__": | |
| main() | |